Stochastik II

Prof. Dr. Bäuerle

Im Wintersemester 06/07

Das Team von http://mitschriebwiki.nomeata.de/

Dieses Dokument ist eine persönliche Vorlesungsmitschrift der Vorlesung Stochastik II im Wintersemester 2006/07 bei Prof. Dr. Bäuerle.

Das latexki-Team gibt keine Garantie für die Richtigkeit oder Vollständigkeit des Inhaltes und übernimmt keine Verantwortung für etwaige Fehler. Auch ist Frau Bäuerle nicht verantwortlich für den Inhalt dieses Skriptes.

Inhaltsverzeichnis

1	Mal	3-Integral und Erwartungswert	5		
2	Eigenschaften des Maß-Integrals				
	2.1	Konvergenzsätze	15		
	2.2	Verhalten bei Transformationen	16		
	2.3	Nullmengen und Maße mit Dichten	18		
	2.4	Ungleichungen und Räume integrierbarer Funktionen	21		
3	Produktmaße und Unabhängigkeit				
	3.1	Der allgemeine Fall	25		
	3.2	Reellwertige Abbildungen, Rechnen mit Verteilungen	32		
4	Das	starke Gesetz der großen Zahlen	37		
5	Zentraler Grenzwertsatz von Lindeberg-Lévy				
	5.1	Charakteristische Funktionen	41		
	5.2	Umkehrsätze	42		
	5.3	Verteilungskonvergenz	44		
6	Zentraler Grenzwertsatz in \mathbb{R}^n				
	6.1	Mehrdimensionale Normalverteilung	58		
	6.2	Zentraler Grenzwertsatz in \mathbb{R}^d	59		
7	Bedingte Erwartungswerte und Bedingte Verteilungen				
8	Mar	tingale und Stoppzeiten	71		
a	Kon	warranzeätza für Martingala	Ω5		

1 Maß-Integral und Erwartungswert

Stochastik I: Ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) bestehend aus:

- (i) $\Omega \neq \emptyset$ bel. Menge, der Ergebnisraum
- (ii) $\mathcal{A} \subset \mathcal{P}(\Omega)$ eine σ -Algebra, d.h.
 - $\Omega \in \mathcal{A}$
 - $A \in \mathcal{A} \implies A^c \in \mathcal{A}$
 - $A_1, A_2, \ldots \in \mathcal{A} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- (iii) $P: \mathcal{A} \to [0,1]$ ein Wahrscheinlichkeitsmaß, d.h.
 - $P(\Omega) = 1$
 - $A_1, A_2, \ldots \in \mathcal{A}$, paarweise disjunkt $\implies P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (σ -Additivität)

Statt das Wahrscheinlichkeitsmaßes P betrachten wir jetzt eine allgemeine Funktion $\mu: \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$, die beliebige positive Werte annehmen kann.

Definition

Sei (Ω, \mathcal{A}) ein messbarer Raum. Eine Abbildung $\mu : \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$ heißt **Maß** auf (Ω, \mathcal{A}) , wenn $\mu(\emptyset) = 0$ und $\mu(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ für alle paarweise disjunkten Ereignisse $A_1, A_2, \ldots, (\Omega, \mathcal{A}, \mu)$ heißt **Maßraum**.

Bemerkung

Da $\mu(A) = \infty$ möglich, definieren wir: $a + \infty = \infty \ \forall a \in \mathbb{R} \cup \{\infty\}.$

Definition

Sei μ ein Maß auf (Ω, \mathcal{A}) .

- 1. μ heißt **endlich**, falls $\mu(\Omega) < \infty$,
- 2. μ heißt σ -endlich, falls \exists eine Folge (A_i) , $i \in \mathbb{N}$, $A_i \in \mathcal{A}$ mit $\bigcup_{i=1}^{\infty} A_i = \Omega$ und $\mu(A_i) < \infty \ \forall i \in \mathbb{N}$.

Beispiel 1.1

a) Sei (Ω, \mathcal{A}) ein messbarer Raum, $\omega \in \Omega$ fest.

$$\delta_{\omega}(A) := \begin{cases} 1, & \omega \in A \\ 0, & \text{sonst} \end{cases}$$

für $A \in \mathcal{A}$ definiert ein Maß.

 δ_{ω} heißt **Einpunktmaß** oder **Dirac-Maß** im Punkt ω . Da $\delta_{\omega}(\Omega) = 1$ ist δ_{ω} sogar ein Wahrscheinlichkeitsmaß.

- b) $\mu := \sum_{\omega \in \Omega} \delta_{\omega}$ ist das **abzählende Maß** auf Ω . (Falls $|A| < \infty : \mu(A) = |A|$ Anzahl der Elemente in A.) μ ist endlich $\Leftrightarrow \Omega$ ist endlich, μ ist σ -endlich $\Leftrightarrow \Omega$ ist abzählbar.
- c) Sei $\Omega = \mathbb{R}$, $\mathcal{A} = \mathfrak{B}(\mathbb{R})$ Borelsche σ -Algebra.

$$\mathfrak{B}(\mathbb{R}) = \sigma(\underbrace{\{(a,b], -\infty < a < b < \infty\}}) = \sigma(\varepsilon) := \bigcap_{\mathcal{A} \text{ σ-Algebra}, \varepsilon \subset \mathcal{A}} \mathcal{A}$$

Sei $a, b \in \mathbb{R}$ mit a < b. Durch $\lambda((a, b]) := b - a$ wird auf $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$ ein Maß definiert, das sogenannte **Lebesgue-Maß**. Die Eindeutigkeit von λ folgt aus dem **Eindeutigkeitssatz für Maß**e:

Sei $\mathcal{A} = \sigma(\varepsilon)$ und ε durchschnittsstabil (d.h.: $A, B \in \varepsilon \implies A \cap B \in \varepsilon$). Weiter seien μ_1, μ_2 Maße auf \mathcal{A} mit $\mu_1(A) = \mu_2(A) \ \forall A \in \varepsilon$. \exists eine Folge $(A_n)_{n \in \mathbb{N}} \subset \varepsilon$ mit $A_n \uparrow \Omega$ und $\mu_1(A_n) = \mu_2(A_n) < \infty \ \forall n$, so gilt $\mu_1 = \mu_2$.

Eine nichttriviale Aufgabe ist es hier zu zeigen, dass λ auf ganz $\mathfrak{B}(\mathbb{R})$ zu einem Maß fortgesetzt werden kann. (gezeigt von Carathéodory; s. z.B. Henze, Bauer)

Bei $\Omega = \overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$, ist $\mathfrak{B}(\overline{\mathbb{R}}) := \{B \subset \overline{\mathbb{R}} | B \cap \mathbb{R} \in \mathfrak{B}(\mathbb{R})\} = \{B, B \cup \{\infty\}, B \cup \{-\infty\}, B \cup \{\infty, -\infty\} | B \in \mathfrak{B}(\mathbb{R})\}$ eine σ -Algebra (analog $\mathfrak{B}((-\infty, \infty))$ und $\overline{\lambda}(B) = \lambda(B) \ \forall B \in \mathfrak{B}(\mathbb{R})$ und $\overline{\lambda}(\{\infty\}) = \overline{\lambda}(\{-\infty\}) = 0$ λ ist <u>nicht</u> endlich, da $\lambda((-\infty, a]) = \sum_{n=1}^{\infty} \underline{\lambda((a-n, a-n+1])} = \infty$, aber

σ-endlich, da $\bigcup_{n=1}^{\infty} (-n, n] = \mathbb{R}, \lambda((-n, n]) < \infty \ \forall n \in \mathbb{N}.$

d) Seien μ_n Maße, $n \in \mathbb{N}$, so ist

$$\mu := \sum_{n=1}^{\infty} b_n \mu_n$$

wieder ein Maß.

Konvention: $a \cdot \infty = \infty \cdot a = \infty, a > 0, 0 \cdot \infty = 0$ Spezialfall: $\mu_n = \delta_{\omega_n}(\omega_n \in \Omega), b \geq 0, \sum_{n=1}^{\infty} b_n = 1$

$$\mu = \sum_{n=1}^{\infty} b_n \delta_{\omega_n}$$

ist dann ein diskretes, auf $\{\omega_1, \omega_2, \ldots\}$ konzentriertes Wahrscheinlichkeitsmaß.

e) Sei $G: \mathbb{R} \to \mathbb{R}$ wachsend und rechtsseitig stetig (Eine Funktion mit diesen Eigenschaften heißt **maßdefinierende Funktion**. Gilt zusätzlich $\lim_{x\to\infty} G(x) = 1$, $\lim_{x\to-\infty} G(x) = 0$, dann ist G eine Verteilungsfunktion.)

$$\mu_G((a,b]) := G(b) - G(a)$$

für $a, b \in \mathbb{R}, a \leq b$ definiert μ_G ein Maß auf $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$, das sogenannte **Lebesgue-Stieltjes-Maß** zu G. (Fortsetzungsproblem analog zu c))

Ist Geine Verteilungsfunktion mit $G(x) = \int_{-\infty}^x f(y) \mathrm{d}y$ mit

$$f \ge 0: \int_{-\infty}^{\infty} f(y) \mathrm{d}y = 1,$$

so ist $\mu_G((a,b]) = \int_a^b f(y) dy$ ein Wahrscheinlichkeitsmaß mit Dichte f.

Bemerkung

Viele der in Stochastik I für Wahrscheinlichkeitsmaße besprochene Eigenschaften gelten auch für allgemeine Maße μ , z.B. μ ist stetig von unten, d.h.

$$\underbrace{A_n \uparrow}_{A_n \subset A_{n+1}} \operatorname{mit} \bigcup_{i=1}^{\infty} A_i = A \implies \mu(A) = \lim_{n \to \infty} (A_n)$$

Bei der Stetigkeit von oben brauchen wir eine Zusatzbedingung:

$$\underbrace{A_n \downarrow}_{A_n \supset A_{n+1}} \operatorname{mit} \bigcap_{k=1}^{\infty} A_k = A, \underline{\mu(A_n) < \infty} \implies \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Beispiel

Lebesgue-Maß: $A_n = (-\infty, -n] \downarrow, \emptyset = \bigcap_{n=1}^{\infty} (-\infty, -n], \lim_{n \to \infty} \lambda((-\infty, -n]) = \infty \neq 0 = \lambda(\emptyset)$

Definition

Seien (Ω, \mathcal{A}) und (Ω', \mathcal{A}') zwei meßbare Räume. Eine Abbildung $f: \Omega \to \Omega'$ heißt $(\mathcal{A}, \mathcal{A}')$ -messbar, falls

$$f^{-1}(A') \in \mathcal{A}, \ \forall A' \in \mathcal{A}'$$

f mit dieser Eigenschaft heißt **Zufallsgröße**. Ist $\Omega' = \mathbb{R}$, dann **Zufallsvariable**.

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Ziel ist es, möglichst vielen Funktionen $f: \Omega \to \bar{\mathbb{R}}$ ein Integral bezüglich μ zuzuordnen. Die Konstruktion erfolgt in drei Schritten:

1.) Sei $\mathcal{E} := \{ f : \Omega \to \mathbb{R} | f \geq 0, f \text{ ist } \mathcal{A}\text{-messbar}, f(\Omega) \text{ endlich} \}$ die Menge der Elementarfunktionen auf Ω .

Ist
$$f(\Omega) = {\alpha_1, \ldots, \alpha_n}, \alpha_i \ge 0$$
, so gilt:

$$f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j}$$

mit $A_j := f^{-1}(\{\alpha_j\})$ und $\Omega = \sum_{j=1}^n A_j$. Eine Darstellung von f mit dieser Eigenschaft heißt "Normaldarstellung" von f. Normaldarstellung ist nicht eindeutig.

Definition

Ist f eine Elementarfunktion mit Normaldarstellung $f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j}$, so heißt $\int f d\mu := \sum_{j=1}^{n} \alpha_j \mu(A_j)$ das μ -Integral von f. Schreibweise $\int f d\mu = \mu(f)$.

Lemma 1.1 (Unabhängigkeit des Integrals von der Normaldarstellung)

Für zwei Normaldarstellungen

$$f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i} = \sum_{i=1}^{m} \beta_i \mathbf{1}_{B_i}$$

einer Funktion $f \in \mathcal{E}$ gilt:

$$\sum_{j=1}^{n} \alpha_j \mu(A_j) = \sum_{i=1}^{m} \beta_i \mu(B_i)$$

Beweis

Voraussetzung
$$\implies \Omega = \sum_{j=1}^{n} A_j = \sum_{i=1}^{m} B_i$$

$$\implies \mu(A_j) \stackrel{\sigma-\text{Add.}}{=} \sum_{i=1}^m \mu(A_j \cap B_i)$$
$$\mu(B_i) = \sum_{i=1}^n \mu(A_j \cap B_i)$$

$$\mu(A_j \cap B_i) \neq 0 \implies A_j \cap B_i \neq \emptyset \implies \alpha_j = \beta_i$$

Insgesamt:

$$\sum_{j=1}^{n} \alpha_{j} \mu(A_{j}) = \sum_{j=1}^{n} \sum_{i=1}^{m} \underbrace{\alpha_{j}}_{\beta_{i}} \mu(A_{j} \cap B_{i})$$
$$= \sum_{i=1}^{m} \beta_{i} \mu(B_{i})$$

Lemma 1.2 (Eigenschaften des μ -Integrals)

a)
$$\int \mathbf{1}_A d\mu = \mu(A) \text{ für } A \in \mathcal{A}$$

b)
$$\int (\alpha f) d\mu = \alpha \int f d\mu \ f \ddot{u} r \ f \in \mathcal{E}, \alpha \geq 0$$

c)
$$\int (f+g)d\mu = \int f d\mu + \int g d\mu \ f\ddot{u}r \ f, g \in \mathcal{E}$$

d)
$$f \leq g \implies \int f d\mu \leq \int g d\mu \ f \ddot{u} r \ f, g \in \mathcal{E}$$

Beweis

a), b) klar

c) Sei
$$f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j}, g = \sum_{i=1}^{m} \beta_i \mathbf{1}_{B_i}$$

$$\Rightarrow f = \sum_{j=1}^{n} \sum_{i=1}^{m} \alpha_{j} \mathbf{1}_{A_{j} \cap B_{i}}$$

$$g = \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{i} \mathbf{1}_{B_{i} \cap A_{j}}$$

$$\text{also } f + g = \sum_{j=1}^{n} \sum_{i=1}^{m} (\alpha_{j} + \beta_{i}) \mathbf{1}_{A_{j} \cap B_{i}}$$

$$\Rightarrow \mu(f + g) = \sum_{j=1}^{n} \sum_{i=1}^{m} (\alpha_{j} + \beta_{i}) \mu(A_{j} \cap B_{i})$$

$$= \sum_{j=1}^{n} \alpha_{j} \sum_{i=1}^{m} \mu(A_{j} \cap B_{i}) + \sum_{i=1}^{m} \beta_{i} \sum_{j=1}^{n} \mu(A_{j} \cap B_{i})$$

$$= \mu(f) + \mu(g)$$

d) folgt mit gleicher Darstellung wie in c)

Bemerkung

- a) Ist $f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j} \in \mathcal{E}$, aber nicht notwendig eine Normaldarstellung, so folgt aus Lemma 1.2 c) $\int f d\mu = \sum_{j=1}^{n} \alpha_j \mu(A_j)$
- b) Ist (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}_+$ eine Zufallsvariable mit endlich vielen Werten $\{x_1, \dots, x_n\}$, so gilt:

$$\int X dP = \sum_{j=1}^{n} x_{j} P(X^{-1}(\{x_{j}\}))$$
$$= \sum_{j=1}^{n} x_{j} P^{X}(\{x_{j}\})$$

$$(A_j = X^{-1}(\{x_j\}))$$

Also: $\int X dP = EX$

2.) Sei $\mathcal{E}^+ := \{ f : \Omega \to \overline{\mathbb{R}} | f \geq 0, f \text{ ist } \mathcal{A}\text{-messbar} \}$. Wichtig: Elemente von \mathcal{E}^+ kann man beliebig gut duch Elemente aus \mathcal{E} approximieren.

Satz 1.1

Zu jedem $f \in \mathcal{E}^+$ gibt es eine wachsende Folge $(u_n)_{n \in \mathbb{N}}$ aus \mathcal{E} mit $u_n \uparrow f$, d.h. $u_n \leq u_{n+1}$ und $\lim_{n \to \infty} u_n = f$ (jeweils punktweise).

Beweis

Sei $\alpha_n: \mathbb{R} \to [0, \infty]$ gegeben durch:

$$\alpha_n(x) := \begin{cases} 0, & \text{falls } x < 0\\ \frac{j}{2^n}, & \text{falls } \frac{j}{2^n} \le x < \frac{j+1}{2^n}, j = 0, 1, \dots, n2^n - 1\\ n, & \text{falls } x \ge n \end{cases}$$

(Hier fehlt ein Bild)

 α_n ist \mathfrak{B} -messbar. $\alpha_n \uparrow$ und $\lim_{n \to \infty} \alpha_n(x) = x$ für $n \to \infty$. Sei $u_n := \alpha_n \circ f$. Dann gilt $u_n \in \mathcal{E}$ und $u_n \uparrow f$.

Bemerkung

Ist f beschränkt, so konvergiert die Folge (u_n) gleichmäßig gegen f, d.h. $\lim_{n\to\infty}\sup_{\omega\in\Omega}|f(\omega)-u_n(\omega)|=0$.

Definition

Sei $f \in \mathcal{E}^+$ und (u_n) eine wachsende Folge aus \mathcal{E} mit $\lim_{n\to\infty} u_n = f$. Dann heißt

$$\int f d\mu := \lim_{n \to \infty} \int u_n d\mu$$

das μ -Integral von f. Wir zeigen, dass $\int f d\mu$ wohldefiniert ist.

Lemma 1.3

Sind (u_n) und (v_n) wachsende Folgen aus \mathcal{E} mit $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$, so gilt:

$$\lim_{n \to \infty} \int u_n d\mu = \lim_{n \to \infty} \int v_n d\mu$$

Beweis

Wir zeigen zunächst: $\lim_{n\to\infty} u_n \geq v$ mit $v\in\mathcal{E} \implies \mu(v) \leq \lim_{n\to\infty} \mu(u_n)$ Denn: Sei $v=\sum_{j=1}^m \alpha_j \mathbf{1}_{A_j} \ (\alpha_j \geq 0, A_j \in \mathcal{A})$ und 0 < c < 1 beliebig. Sei $B_n := \{\omega | u_n(\omega) \geq cv(\omega)\} \in \mathcal{A}$. Da $u_n \geq cv\mathbf{1}_{B_n}$ folgt:

$$\mu(u_n) \ge c\mu(v\mathbf{1}_{B_n}) \ (*)$$

Nach Voraussetzung: $v \leq \lim_{n \to \infty} u_n, u_n \uparrow \Longrightarrow B_n \uparrow \Omega, A_j \cap B_n \uparrow A_j$

$$\implies \mu(v) = \sum_{j=1}^{m} \alpha_j \mu(A_j) = \lim_{n \to \infty} \sum_{j=1}^{m} \alpha_j \mu(A_j \cap B_n)$$
$$= \lim_{n \to \infty} \mu(v \mathbf{1}_{B_n})$$

Nehme $\lim_{n\to\infty}$ in $(*):\lim_{n\to\infty}\mu(u_n)\geq c\mu(v)$. Da c<1 beliebig war, folgt die Behauptung.

Jetzt zur eigentlichen Aussage: Es gilt: $v_k \leq \lim_{n \to \infty} u_n, u_k \leq \lim_{n \to \infty} v_n \xrightarrow{\text{Hilfsaussage}} \mu(v_k) \leq \lim_{n \to \infty} \mu(u_n), \mu(u_k) \leq \lim_{n \to \infty} \mu(v_n), \ \forall k \in \mathbb{N}.$ lim $_{k \to \infty}$ bei beiden Ungleichungen \Longrightarrow Behauptung.

Bemerkung

- a) Die letzten beiden Definitionen sind verträglich
- b) Die Eigenschaften von Lemma 1.2 gelten weiter.
- 3.) $f: \Omega \to \overline{\mathbb{R}}$ ist \mathcal{A} -messbar (ohne Vorzeichenbeschränkung). $f^+ := \max\{0, f\}, f^- := -\min\{0, f\}, f = f^+ f^-, |f| = f^+ + f^-$

Definition

Eine A-messbare Funktion $f: \Omega \to \mathbb{R}$ heißt μ -integrierbar, falls $\int f^+ d\mu < \infty$, $\int f^- d\mu < \infty$. In diesem Fall heißt $\int f d\mu = \mu(f) = \int f^+ d\mu - \int f^- d\mu$ das μ -Integral von f.

Schreibweise: $\int f d\mu = \int f(\omega)\mu(d\omega) = \int_{\Omega} f d\mu$; $\int_{A} f d\mu := \int f \cdot \mathbf{1}_{A} d\mu$

Bemerkung a) Die letzten beiden Definitionen sind verträglich

- b) Falls mindestens einer der Werte $\int f^+ d\mu$, $\int f^- d\mu$ endlich ist, so heißt f quasi-integrierbar.
- c) Ist (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ eine Zufallsvariable, so gilt: EX existiert $\iff X$ ist P-integrierbar. In diesem Fall: $EX = \int X dP$
- d) Offenbar gilt: f ist integrierbar $\iff |f|$ ist integrierbar

Satz 1.2 (Eigenschaften des μ -Integrals)

Es seien $f, g: \Omega \to \mathbb{R}$ μ -integrierbar und $c \in \mathbb{R}$. Dann gilt:

a) cf und f + g sind μ -integrierbar und

$$\int cf \, d\mu = c \int f \, d\mu$$

$$\int (f+g) \, d\mu = \int f \, d\mu + \int g \, d\mu$$

- b) $f \leq g \implies \int f d\mu \leq \int g d\mu$
- $|c| | \int f d\mu | \leq \int |f| d\mu$

Beweis a) α) Sei $c \geq 0$ (analog $c \leq 0$): $(cf)^+ = cf^+, (cf)^- = cf^-$ Also ist cf integrierbar: $\xrightarrow{\text{Satz 1.1}} \exists u_n^+ \uparrow f^+, u_n^+ \in \mathcal{E}$

$$\int cf^{+} d\mu = \lim_{n \to \infty} \int cu_{n}^{+} d\mu$$
$$= c \lim_{n \to \infty} \int u_{n}^{+} d\mu$$
$$= c \int f^{+} d\mu$$

Analog f^- .

β) $|f + g| \le |f| + |g| \implies f + g$ μ-integrierbar. Sei zunächst $f, g \in \mathcal{E}^+ \xrightarrow{\text{Satz 1.1}} \exists u_n \uparrow f, v_n \uparrow g, u_n, v_n \in \mathcal{E} \implies u_n + v_n \uparrow f + g, u_n + v_n \in \mathcal{E}$ Mit Lemma 1.2 folgt:

$$\int (f+g)d\mu = \lim_{n\to\infty} \int (u_n + v_n)d\mu$$

$$= \lim_{n\to\infty} (\int u_n d\mu + \int v_n d\mu)$$

$$= \lim_{n\to\infty} \int u_n d\mu + \lim_{n\to\infty} \int v_n d\mu$$

$$= \int f d\mu + \int g d\mu$$

b) vergleiche Übung

c)
$$f \leq |f|, -f \leq |f| \xrightarrow{\text{b) mit } g = |f|}$$
 Behauptung

Bemerkung Ist $\mu = \lambda$ das Lebesgue-Maß, so heißt $\int f d\mu = \int f d\lambda$ Lebesgue-Integral.

Beispiel 1.2 a) Sei δ_{ω} das Dirac-Maß, $f: \Omega \to \mathbb{R}$ ist δ_{ω} -integrierbar falls $f(\omega) < \infty$ und dann gilt

$$\int f \mathrm{d}\delta_{\omega} = f(\omega)$$

Denn: Sei $f \in \mathcal{E} \implies f = \sum_{j=1}^{n} \alpha_{j} \mathbf{1}_{A_{j}} \implies \int f d\delta_{\omega} = \sum_{j=1}^{n} \alpha_{j} \delta_{\omega}(A_{j}) = \alpha_{k} \cdot 1 = f(\omega)$ $f \in \mathcal{E}^{+} : u_{n} \uparrow f, \int u_{n} d\delta_{\omega} = u_{n}(\omega) \uparrow f(\omega)$ $f \text{ allgemein } \implies f = f^{+} - f^{-}$

b) Sei (μ_n) eine Folge von Maßen und $\mu = \sum_{n=1}^{\infty} \mu_n$. Für $f: \Omega \to \bar{\mathbb{R}}$ gilt:

$$f$$
 ist μ -integrierbar $\iff \sum_{n=1}^{\infty} \int |f| d\mu_n < \infty$
 $\int f d\mu = \sum_{n=1}^{\infty} \int f d\mu_n$ (vergleiche Übung)

Spezialfall: $(\Omega, \mathcal{A}) = (\mathbb{N}, \mathcal{P}(\mathbb{N})), \mu = \sum_{n=1}^{\infty} \delta_n$ (Zählmaß auf \mathbb{N}) f ist μ -integrierbar $\iff \sum_{n=1}^{\infty} |f(n)| < \infty$, dann $\int f d\mu = \sum_{n=1}^{\infty} f(n)$. Summation ist ein Spezialfall von Integration. Sei $\Omega = \{\omega_1, \omega_2, \ldots\}, \mathcal{A} = \{\omega_1, \omega_2, \ldots\}$

 $\mathcal{P}(\Omega).\mu = P := \sum_{n=1}^{\infty} p_n \delta_{\omega_n}$ mit $p_n \geq 0, \sum_{n=1}^{\infty} p_n = 1$ (Wahrscheinlichkeitsmaß).

Sei $X: \Omega \to \overline{\mathbb{R}}$ eine Zufallsvariable:

$$EX$$
 existiert $\iff \sum_{n=1}^{\infty} |X(\omega_n)| p_n < \infty \iff X$ ist P -integrierbar

$$EX = \sum_{n=1}^{\infty} X(\omega_n) P_n = \sum_{n=1}^{\infty} X(\omega_n) P(\{\omega_n\}) = \int X dP$$

c) Sei $\Omega = [a, b]$ und $\mathcal{A} = \mathfrak{B}_{[a,b]} = \{A \cap [a, b] | A \in \mathfrak{B}\}$ (Spur von \mathfrak{B} auf [a, b]) $\mu(A) := \lambda(A) \ \forall A \in \mathcal{A}$. Ist $f: \Omega \to \mathbb{R}$ messbar und f Riemann-integrierbar, so ist f auch μ -integrierbar und es gilt:

$$\int f \mathrm{d}\mu = \int f(x) \mathrm{d}x$$

(Hier fehlt ein Bild zur Veranschaulichung)

Das Lebesgue-Integral ist eine Erweiterung des Riemann-Integrals: Sei $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$. f ist nicht Riemann-integrierbar. Da $f \in \mathcal{E}$ gilt:

$$\int f d\lambda = 0 \cdot \lambda(\mathbb{Q}^c \cap [0, 1]) + 1 \cdot \lambda(\mathbb{Q} \cap [0, 1]) = 0$$

Das letzte Gleichheitszeichen gilt wegen:

(i)
$$\lambda(\{a\}) = 0$$
, da $\{a\} = \bigcap_{n=1}^{\infty} [a, a + \frac{1}{n}]$

(ii)
$$\lambda(\sum_{i=1}^{\infty}\{a_i\}) = \sum_{i=1}^{\infty} \lambda(\{a_i\}) = 0$$

Vorsicht bei uneigentlichen Riemann-Integralen! $\int_0^\infty \frac{\sin x}{x} dx$ ist Riemann-integrierbar, aber nicht Lebesgue-integrierbar.

2 Eigenschaften des Maß-Integrals

2.1 Konvergenzsätze

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f, f_1, f_2, \ldots : \Omega \to \mathbb{R}$ messbare Funktionen.

Satz 2.1 (Satz von Beppo Levi, Satz von der monotonen Konvergenz) $Sind f, f_1, f_2, \ldots \geq 0$ mit $f_n \uparrow f$, so gilt

$$\lim_{n\to\infty} \int f_n d\mu = \int f d\mu.$$

Beweis $\forall f_n \exists (u_{nm})_{m \in \mathbb{N}} \subset \mathcal{E}$ mit $u_{nm} \uparrow f_n$ für $m \to \infty$. Sei $h_m := \max\{u_{1m}, \dots, u_{mm}\} \implies h_m \uparrow \text{ und } (h_m) \subset \mathcal{E}$. Außerdem: $u_{nm} \leq h_m$ für $n \leq m$.

Also: $f_n = \sup_{m \in \mathbb{N}} u_{nm} = \sup_{m \geq n} u_{nm} \leq \sup_{m \in \mathbb{N}} h_m$ und $h_m \leq f_m \leq f$. Insgesamt: $h_m \uparrow f$ und $\lim_{m \to \infty} \int h_m \mathrm{d}\mu = \int f \mathrm{d}\mu$. Mit $\int h_m \mathrm{d}\mu \leq \int f \mathrm{d}\mu$ folgt die Behauptung.

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f_1, f_2, f_3, \ldots : \Omega \to \mathbb{R}$ messbare Funktionen.

Satz 2.2 (Lemma von Fatou)

Gilt $f_n \geq 0, n \in \mathbb{N}$, so folgt

$$\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu$$

Beweis Sei $g_n := \inf_{m \geq n} f_m, f := \liminf_{n \to \infty} f_n$, so gilt $g_n \uparrow f$ und mit Satz 2.1 $\int \liminf_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int g_n d\mu = \lim\inf_{n \to \infty} \int g_n d\mu \leq \liminf_{n \to \infty} \int f_n d\mu$

Satz 2.3 (Satz von Lebesgue oder Satz von der majorisierten Konvergenz)

Es gelte $\lim_{n\to\infty} f_n(\omega) = f(\omega) \ \forall \omega \in \Omega$. Existert eine μ -integrierbare Funktion $g: \Omega \to \mathbb{R}$ mit der Eigenschaft $|f_n(\omega)| \leq g(\omega) \ \forall \omega \in \Omega, \ \forall n \in \mathbb{N}$, so folgt:

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu$$

Beweis Sei $g_n:=|f_n-f|, h:=|f|+g.$ Wegen $|h|\leq 2g$ ist h μ -integrierbar. Außerdem gilt

$$h - g_n = |f| + g - |f_n - f| \ge |f| + g - |f_n| - |f|$$

= $g - |f_n| \ge 0$

wegen $g_n \to 0$ gilt $h - g_n \to h$, also folgt mit Satz 2.2

$$\int h d\mu = \int \liminf_{n \to \infty} (h - g_n) d\mu$$

$$\leq \liminf_{n \to \infty} \int (h - g_n) d\mu$$

$$= \underbrace{\int h d\mu - \limsup_{n \to \infty} \int g_n d\mu}_{<\infty}$$

 $\implies \limsup_{n\to\infty} \int g_n d\mu \leq 0$ Wegen $g_n \geq 0$ bedeutet dies:

$$\lim_{n \to \infty} \int |f_n - f| d\mu = \lim_{n \to \infty} \int g_n d\mu = 0$$

und damit

$$\left| \int f_n d\mu - \int f d\mu \right| = \left| \int (f_n - f) d\mu \right| \le \int |f_n - f| d\mu \to 0$$

Bemerkung 2.1 Für Wahrscheinlichkeitsmaße lautet Satz 2.3:

Ist $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, so dass $X_n \stackrel{f.s.}{\to} X$ (X ist dann automatisch wieder eine Zufallsvariable) und es gibt eine Zufallsvariable Y mit $|X_n| \le Y \ \forall n \in \mathbb{N}$ und $EY < \infty$, so gilt $\lim_{n\to\infty} EX_n = EX$.

Oft kommt man mit einer Majorante der Form $Y \equiv c, c \in \mathbb{R}$ zum Ziel.

2.2 Verhalten bei Transformationen

Es sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und (Ω', \mathcal{A}') ein messbarer Raum und $T: \Omega \to \Omega'$ eine $(\mathcal{A}, \mathcal{A}')$ -messbare Abbildung. Aus Stochastik 1 ist bekannt (vgl. §5.2, Verteilung), dass durch

$$\mu^T: \mathcal{A}' \to [0, \infty], \mu^T(A') := \mu(\underbrace{T^{-1}(A')}_{\in \mathcal{A}}) = \mu(\{\omega \in \Omega | T(\omega) \in A'\})$$

ein Maß auf (Ω', \mathcal{A}') definiert wird (Maßtransport). μ^T heißt **Bildmaß** von μ unter der Tranformation T.

Ist X = T eine Zufallsgröße auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit Werten in (Ω', \mathcal{A}') , so nennt man $\mu^T = P^X$ die Verteilung von X. Sei nun weiter $f: \Omega' \to \mathbb{R}$ messbar.

Skizze:
$$(\Omega, \mathcal{A}) \xrightarrow{T} (\Omega', \mathcal{A}')$$

$$\downarrow^f$$
 $(\mathbb{R}, \mathfrak{B})$

Satz 2.4 (Integration bezüglich des Bildmaßes, Transformationssatz)

Mit den obigen Bezeichnungen und Voraussetzungen gilt: f ist genau dann μ^T integrierbar, wenn $f \circ T$ μ -integrierbar ist.

Dann gilt:

$$\int f d\mu^T = \int (f \circ T) d\mu$$

Beweis

(i) Falls $f = \mathbf{1}_A, (A \in \mathcal{A})$ gilt

$$\int f d\mu^{T} = \mu^{T}(A)$$

$$= \mu(T^{-1}(A))$$

$$= \int \mathbf{1}_{T^{-1}(A)} d\mu$$

$$= \int \mathbf{1}_{A} \circ T d\mu$$

$$= \int f \circ T d\mu$$

wegen Satz 1.2(a) folgt damit die Aussage für $f \in \mathcal{E}$

(ii) Sei jetzt $f \geq 0 \implies \exists (u_n)_{n \in \mathbb{N}} \subset \mathcal{E} \text{ mit } u_n \uparrow f \text{ und } \int f d\mu^T = \lim_{n \to \infty} \int u_n d\mu^T$. Offenbar gilt $u_n \circ T \in \mathcal{E}, (u_n \circ T) \uparrow (f \circ T)$ Also folgt:

$$\int f d\mu^{T} = \lim_{n \to \infty} \int u_{n} d\mu^{T}$$

$$\stackrel{(i)}{=} \lim_{n \to \infty} \int (u_{n} \circ T) d\mu$$

$$= \int (f \circ T) d\mu$$

(iii) Ist $f: \Omega' \to \mathbb{R}$ eine beliebige $(\mathcal{A}', \mathfrak{B})$ -messbare Abbildung so gilt

$$\int f^{+} d\mu^{T} < \infty \quad \Longleftrightarrow \quad \int f^{+} \circ T d\mu < \infty$$
$$\int f^{-} d\mu^{T} < \infty \quad \Longleftrightarrow \quad \int f^{-} \circ T d\mu < \infty$$

Da $(f \circ T)^+ = f^+ \circ T, (f \circ T)^- = f^- \circ T,$ folgt $f \mu^T$ -integrierbar $\iff f \circ T$

 μ -integrierbar

$$\int f d\mu^{T} = \int f^{+} d\mu^{T} - \int f^{-} d\mu^{T}$$

$$\stackrel{(ii)}{=} \int f^{+} \circ T d\mu - \int f^{-} \circ T d\mu$$

$$= \int (f \circ T)^{+} d\mu - \int (f \circ T)^{-} d\mu$$

$$= \int f \circ T d\mu.$$

Bemerkung 2.2 Das Beweisverfahren (zuerst für $f \in \mathcal{E}$ (bzw. $f = \mathbf{1}_A$), dann für $f \in \mathcal{E}^+$, dann für f beliebig) heißt **algebraische Induktion** und wird häufig verwendet.

2.3 Nullmengen und Maße mit Dichten

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum.

Definition 2.1 $N \in \mathcal{A}$ heißt μ -Nullmenge, falls $\mu(N) = 0$.

Definition 2.2 Ist (A) eine Aussage, die von $\omega \in \Omega$ abhängt, so sagen wir, dass (A) μ -fast überall (μ -f.ü.) gilt, wenn (A) wahr ist $\forall \omega$ außerhalb einer μ -Nullmenge. Ist $\mu = P$ ein Wahrscheinlichkeitsmaß, so sagt man P-fast-überall oder P-fast sicher (P-f.s.)

Satz 2.5

 $f, g: \Omega \to \mathbb{R}$ seien $(\mathcal{A}, \mathfrak{B})$ messbar.

- a) Sei $f \ge 0$. Dann gilt: $\int f d\mu = 0 \iff f = 0, \mu\text{-}f.\ddot{u}$.
- b) Ist f μ -integrierbar und gilt f = g μ -f. \ddot{u} ., so ist auch g μ -integrierbar mit $\int f d\mu = \int g d\mu$.

Beweis

- a) Sei $N := \{ \omega \in \Omega | f(\omega) \neq 0 \}$. $N \in \mathcal{A}$, da f messbar.
 - (i) Annahme: $\int f d\mu = 0$. Sei $A_n := \{ \omega \in \Omega | f(\omega) \ge \frac{1}{n} \} \implies A_n \uparrow N \text{ und } \mu(N) = \lim_{n \to \infty} (\mu(A_n))$. Außerdem gilt $0 = \int f d\mu \ge \int \frac{1}{n} \cdot \mathbf{1}_{A_n} d\mu = \frac{1}{n} \cdot \mu(A_n) \ge 0$ $\implies \mu(A_n) = 0 \ \forall n \in \mathbb{N} \implies \mu(N) = 0$, also f = 0 μ -f.ü.
 - (ii) Annahme: N ist μ -Nullmenge. Sei $g \in \mathcal{E}$, $g(\Omega) = \{\alpha_1, \dots, \alpha_n\}$, $g \leq f$. $\implies g = \sum_{j=1}^n \alpha_j \circ \mathbf{1}_{A_j}$. Falls $\alpha_j > 0 \implies A_j \subset N \implies \int g \mathrm{d}\mu = 0 \stackrel{\mathrm{L.1.3}}{\Longrightarrow} \int f \mathrm{d}\mu = 0$.

b) Seien zunächst $f, g \ge 0, N := \{f \ne g\} \stackrel{\text{a)}}{\Rightarrow}$

$$\int f d\mu = \int_{N} f d\mu + \int_{N^{C}} f d\mu$$

$$= 0 + \int_{N^{C}} g d\mu$$

$$= \int_{N} g d\mu + \int_{N^{C}} g d\mu$$

$$= \int g d\mu$$

Insbesondere: $\int f d\mu < \infty \iff \int g d\mu < \infty$. Seien nun f,g beliebig. Wegen $\{f^+ = g^+\} \supset \{f = g\} \subset \{f^- = g^-\}$ gilt auch $f^+ = g^+$ und $f^- = g^ \mu$ -f.ü. und mit dem vorigen Teil folgt die Behauptung.

Bemerkung 2.3 Im Folgenden sei $L^1(\Omega, \mathcal{A}, \mu) := \{f : \Omega \to \mathbb{R} \mid f \text{ ist messbar und } \mu\text{-integrierbar}\}$ (ist ein Vektorraum) und wir definieren

 $f \sim_{\mu} g : \iff f = g \text{ μ-f.$\ddot{u}.}$ und \sim_{μ} ist Äquivalenz
relation auf $\{f : \Omega \to \mathbb{R} \mid f \text{ ist messbar}\}.$ Sei $f^{[\mu]}$ die Äquivalenzklasse zu
 f.

Mit Satz 2.5: Entweder alle oder keines der Elemente in $f^{[\mu]}$ ist μ -integrierbar und die Integrale sind ggfs. gleich. Außerdem gilt:

 $f_1 \in f^{[\mu]}, g_1 \in g^{[\mu]} \Longrightarrow f_1 + g_1 \in (f+g)^{[\mu]}.$

 \implies Man kann zum Raum der Äquivalenzklassen übergehen: $L^1(\Omega, \mathcal{A}, \mu) / \sim_{\mu}$ Mit $||f^{[\mu]}||_1 := \int |f| d\mu$ ist eine Norm definiert; sie ist wohldefiniert, da $\int f_1 d\mu = \int f_2 d\mu \ \forall f_1, f_2 \in f^{[\mu]}$.

Wichtig: $f \mapsto \int |f| d\mu =: ||f||$ ist auf $L^1(\Omega, \mathcal{A}, \mu)$ keine Norm, da $||f|| = 0 \implies f \equiv 0$ im Allgemeinen falsch ist!

Satz 2.6 $(L^1(\Omega, \mathcal{A}, \mu)/\sim_{\mu}, ||\cdot||_1)$ ist ein Banachraum.

Definition 2.3 Es seien μ, ν Maße auf dem messbaren Raum (Ω, \mathcal{A}) . Gilt dann $\mu(A) = 0 \implies \nu(A) = 0 \ \forall \ A \in \mathcal{A}$, so heißt ν μ -stetig, in Zeichen $\nu \ll \mu$. Man sagt auch, dass μ das Maß ν dominiert.

Satz 2.7 und Definition

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f: \Omega \to \mathbb{R}_+$ $(\mathcal{A}, \mathfrak{B})$ -messbar. Dann wird durch $\nu: \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$, $\nu(A) := \int_A f d\mu$ ein Maß auf (Ω, \mathcal{A}) definiert. Man nennt ν das Maß mit der Dichte f bzgl. μ und f eine μ -Dichte von ν . Schreibweise: $f = \frac{d\nu}{d\mu}$

Beweis Wir weisen nach, dass ν ein Maß ist: $\nu \geq 0$ ist klar, da f nach \mathbb{R}_+ abbildet;

(i)
$$\mu(\emptyset) = \int f \cdot \mathbf{1}_{\emptyset} d\mu = 0$$
.

(ii) Seien A_1, A_2, \ldots paarweise disjunkt und $A = \sum_{n=1}^{\infty} A_n$. Wegen $f \cdot \mathbf{1}_{\sum_{k=1}^{n} A_k} \uparrow f \cdot \mathbf{1}_A$ folgt mit Satz 2.1:

$$\nu(\sum_{n=1}^{\infty} A_n) = \int f \cdot \mathbf{1}_{A} d\mu$$

$$= \lim_{n \to \infty} \left(\int f \cdot \underbrace{\mathbf{1}_{\sum_{k=1}^{n} A_k}}_{=\sum_{k=1}^{n} \mathbf{1}_{A_k}} d\mu \right)$$

$$= \lim_{n \to \infty} \left(\int \sum_{k=1}^{n} f \cdot \mathbf{1}_{A_k} d\mu \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} \left(\int f \cdot \mathbf{1}_{A_k} d\mu \right) \right)$$

$$= \sum_{k=1}^{\infty} \nu(A_k)$$

Satz 2.8 (Satz von Radon-Nikodym)

Seien μ, ν Maße auf dem messbaren Raum (Ω, \mathcal{A}) , μ sei σ -endlich. Dann gilt: ν ist genau dann μ -stetig, wenn ν eine Dichte bzgl. μ hat.

Beweis ν hat Dichte bzgl. $\mu \implies \nu(A) = \int_A f d\mu = \int f \cdot \mathbf{1}_A d\mu \xrightarrow{S.2.5a} \nu \ll \mu$. Die andere Richtung siehe z.B. Henze, Stochastik II.

Satz 2.9 Seien μ und ν Maße auf (Ω, \mathcal{A}) , ν habe μ -Dichte f. Dann gilt für alle $(\mathcal{A}, \mathfrak{B})$ -messbaren Abbildungen $g : \Omega \to \mathbb{R}$:

g ist genau dann ν -integrierbar, wenn $g \cdot f$ μ -integrierbar ist und in diesem Fall ist $\int g d\nu = \int g \cdot f d\mu$.

Beweis Übung.

Bemerkung 2.4 Merkregel: $\int g d\nu = \int g \cdot \frac{d\nu}{d\mu} d\mu$.

Beispiel 2.1 Sei $\mu = \lambda$ das Lebesgue-Maß und $\nu = P^X$ die Verteilung einer Zufallsvariablen X. Ist X absolutstetig, so gilt (Stochastik I):

$$P^X(B) = \int_B f_X(x) \mathrm{d}x$$

mit $f_X : \mathbb{R} \to \mathbb{R}_+ \cup \{\infty\}$ und

$$EX = \int_{\Omega} X dP = \int_{\mathbb{R}} x P^X(dx) = \int_{\mathbb{R}} x \cdot f_X(x) dx.$$

mit den Sätzen 2.4 und 2.9.

2.4 Ungleichungen und Räume integrierbarer Funktionen

Hier stellen wir einige Hilfsmittel für später zusammen. Der folgende Satz behandelt den Spezialfall von Wahrscheinlichkeitsmaßen.

Satz 2.10 Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ eine Zufallsvariable und $\gamma > 0$. Dann gilt:

$$P(|X| \ge a) \le \frac{1}{a^{\gamma}} \cdot E|X|^{\gamma} \quad \forall a > 0.$$

Existiert die Varianz von X, so gilt:

$$P(|X - EX| \ge a) \le \frac{1}{a^2} \cdot \text{Var}(X) \quad \forall a > 0.$$

(Ungleichung von Tschebyschef, siehe Abschnitt 7.6, Stochastik I)

Beweis

Sei $Y: \Omega \to \mathbb{R}$ definiert durch:

$$Y(\omega) = \begin{cases} a, & \text{falls } |X(\omega)| \ge a \\ 0, & \text{sonst} \end{cases}$$

$$\implies |Y| \le |X|$$

$$\implies |Y|^{\gamma} \le |X|^{\gamma} \quad \forall \gamma > 0$$

$$\implies a^{\gamma} P(|X| \ge a) = a^{\gamma} P(|Y| \ge a) = E|Y|^{\gamma} \le E|X|^{\gamma}$$

Für Teil 2 setze $\tilde{X} := X - EX$ und $\gamma = 2$.

Sei $I \subset \mathbb{R}$ ein offenes Intervall und $\Phi: I \to \mathbb{R}$ eine konvexe Funktion, d.h.

$$\Phi(\alpha x + (1 - \alpha)y) \le \alpha \Phi(x) + (1 - \alpha)\Phi(y) \quad \forall x, y \in I, \ \forall \alpha \in [0, 1]$$

Außerdem gilt $\forall y \in I, \exists m \in \mathbb{R}, \text{ mit}$

$$\Phi(x) \ge \Phi(y) + m(x - y)$$

Satz 2.11 (Jensensche Ungleichung)

Es seien $I \subset \mathbb{R}$ ein offenes Intervall, $\Phi: I \to \mathbb{R}$ konvex und X eine Zufallsvariable mit $E|X| < \infty, E|\Phi(X)| < \infty$ und $P(X \in I) = 1$. Dann gilt:

$$EX \in I \text{ und } \Phi(EX) < E\Phi(X)$$

Beweis

Falls $I=(-\infty,\infty)$ ist automatisch $EX\in I$. Ist X< a P-f.s. so gilt: $EX\leq Ea=a$. Falls E(a-X)=0 folgt, da $a-X\geq 0$ $\xrightarrow{\operatorname{Satz}\ 2.5}$ X=a P-f.s. Widerspruch! D.h., falls $I=(\cdot,a)\subset (-\infty,a) \Longrightarrow EX< a$. Analog untere Schranke $\Longrightarrow EX\in I$.

Mit der Vorüberlegung folgt $(y = EX, x = X(\omega))$

$$\Phi(X) \ge \Phi(EX) + m(X - EX)$$
 P-f.s.

für ein $m \in \mathbb{R}$. Erwartungswert auf beiden Seiten führt zur Behauptung (Nullmengen können wir vernachlässigen).

Beispiel 2.2

Für
$$\Phi(x)=|x|, \Phi(x)=x^2$$
 folgt: $|EX|\leq E|X|, (EX)^2\leq EX^2$. ($\Longrightarrow EX^2-(EX)^2=\operatorname{Var}X\geq 0$)

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ wieder ein Maßraum.

Definition

Eine messbare Funktion $f: \Omega \to \mathbb{R}$ heißt p-fach μ -integrierbar, wenn $\int |f|^p d\mu < \infty$ mit p > 0.

$$L^{p}(\Omega, \mathcal{A}, \mu) := \{ f : \Omega \to \mathbb{R} | \int |f|^{p} d\mu < \infty \}$$
$$||f||_{p} = \left(\int |f|^{p} d\mu \right)^{\frac{1}{p}}$$

Wie im vorigen Abschnitt ist L^p bzw. $L^p(\Omega, \mathcal{A}, \mu)/\sim_{\mu}$ ein Vektorraum über \mathbb{R} und $||f||_p$ auf den Äquivalenzklassen eine Norm.

Satz 2.12

a) (Höldersche Ungleichung) Es seien $p > 1, f \in L^p(\Omega, \mathcal{A}, \mu), g \in L^q(\Omega, \mathcal{A}, \mu),$ wobei $\frac{1}{p} + \frac{1}{q} = 1$. Dann folgt: $f \cdot g \in L^1(\Omega, \mathcal{A}, \mu)$ und es gilt:

$$||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$$

b) (Minkowskische Ungleichung) Es seien $p \ge 1$ und $f, g \in L^p(\Omega, \mathcal{A}, \mu)$. Dann folgt $f + g \in L^p(\Omega, \mathcal{A}, \mu)$ und es gilt:

$$||f + g||_p \le ||f||_p + ||g||_p$$

Beweis

a) Falls $\int |f|^p d\mu = 0 \xrightarrow{\text{Satz 2.5}} f = 0$ μ -f.s. und die Ungleichung ist richtig. Sei also $||f||_p > 0$ und $||g||_q > 0$ (gleiches Argument). $x \mapsto \log x$ ist konkav, d.h. es gilt: $\alpha \log(a) + (1-\alpha) \log(b) \le \log(\alpha a + (1+\alpha)b) \ \forall a,b > 0,0 < \alpha < 1$. exp(·) auf beiden Seiten:

$$a^{\alpha}b^{1-\alpha} \leq \alpha a + (1-\alpha)b \quad \forall a,b \geq 0,0 < \alpha < 1$$
 Setze $a := \frac{|f(\omega)|^p}{||f||_p^p}, b := \frac{|g(\omega)|^q}{||g||_q^q}, \alpha = \frac{1}{p} \text{ (ω beliebig)}$
$$\Longrightarrow \quad \frac{|f(\omega)| \cdot |g(\omega)|}{||f||_p \cdot ||g||_q} \quad \leq \frac{1}{p} \frac{|f(\omega)|^p}{||f||_p^p} + \frac{1}{q} \frac{|g(\omega)|^q}{||g||_q^q}$$

$$\Longrightarrow \quad |f(\omega)| \cdot |g(\omega)| \quad \leq \frac{1}{p} |f(\omega)|^p ||f||_p^{1-p} ||g||_q + \frac{1}{q} |g(\omega)|^q ||g||_q^{1-q} ||f||_p$$

$$\xrightarrow{\text{Int. "\below below }} \quad ||f \cdot g||_1 \quad \leq \frac{1}{p} ||f||_p^p ||f||_p^{1-p} ||g||_q + \frac{1}{q} ||g||_q^q ||g||_q^{1-q} ||f||_p$$

$$= \frac{1}{p} ||f||_p ||g||_q + \frac{1}{q} ||g||_q ||f||_p$$

$$\Longrightarrow \quad \text{Behauptung}$$

b) Wegen $|f+g| \leq |f| + |g|$ gilt $||f+g||_p \leq |||f| + |g|||_p$. Also genügt es die Ungleichung für $f+g \geq 0$ zu beweisen. Falls p=1 folgt $||f+g||_1 = \int (f+g) \mathrm{d}\mu = \int f \mathrm{d}\mu + \int g \mathrm{d}\mu = ||f||_1 + ||g||_1$. Sei also p>1. Mit $(f+g)^p \leq (2 \cdot \max\{f,g\})^p \leq 2^p (|f|^p + |g|^p) \implies (f+g) \in L^p$, also $||f+g||_p < \infty$. Sei $q:=\frac{1}{1-\frac{1}{p}}$. Anwendung von Teil a) liefert:

$$||f+g||_p^p = \int f(f+g)^{p-1} d\mu + \int g(f+g)^{p-1} d\mu$$
a)
$$\leq (||f||_p + ||g||_p)||(f+g)^{p-1}||_q \quad (*)$$

Wegen (p-1)q = p gilt:

$$||(f+g)^{p-1}||_q = \left(\int (f+g)^{(p-1)q} d\mu\right)^{\frac{1}{q}} = ||f+g||_p^{\frac{p}{q}} = ||f+g||_p^{p-1}$$

Falls $||f+g||_p=0$ ist die Ungleichung richtig. Sei also $||f+g||_p>0$. Nehme (*) und teile durch $||f+g||_p^{p-1}$ auf beiden Seiten \implies Behauptung.

Bemerkung

Falls $p = q = 2, \Omega = \{1, \dots, n\}, \mathcal{A} = \mathcal{P}(\Omega), \mu = \sum_{k=1}^{n} \delta_k, f(i) = a_i, g(i) = b_i,$ bekommt man:

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}}$$

In diesem Fall ist Satz 2.12 a) die Cauchy-Schwarz-Ungleichung. Lineare Algebra: $|\langle a, b \rangle| \leq ||a|| \cdot ||b|| \quad \forall a, b \in \mathbb{R}^n$. Das motiviert

Satz 2.13

Es sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $L^2(\Omega, \mathcal{A}, \mu)/\sim_{\mu}$ der Raum der \sim_{μ} -Äquivalenzklassen quadratisch μ -integrierbarer Funktion $f: \Omega \to \mathbb{R}$.

Dann ist $\langle f, g \rangle := \int f \cdot g d\mu$ hierauf ein Skalarprodukt, durch den $L^2(\Omega, \mathcal{A}, \mu) / \sim_{\mu} zu$ einem Hilbertraum wird.

Beweis siehe Henze, Stochastik II

Bemerkung

- a) $(L^p(\Omega, \mathcal{A}, \mu)/\sim_{\mu}, ||\cdot||_p)$ ist ein Banachraum für $p \geq 1$.
- b) Ist $\Phi: L^p(\Omega, \mathcal{A}, \mu) \to \mathbb{R}$ stetig und linear, so existiert ein $g \in L^q(\Omega, \mathcal{A}, \mu)$ mit $\Phi(f) = \int f \cdot g d\mu \quad \forall f \in L^p(\Omega, \mathcal{A}, \mu).$

3 Produktmaße und Unabhängigkeit

3.1 Der allgemeine Fall

Im Folgenden sei $I \neq \emptyset$ eine beliebige Indexmenge. $\forall i \in I$ sei $(\Omega_i, \mathcal{A}_i)$ ein messbarer Raum. Weiter sei $\Omega := \times_{i \in I} \Omega_i$ ein neuer Ergebnisraum. Wir definieren die **Projektion** auf die i-te Koordinate $\Pi_i : \Omega \to \Omega_i$ durch $\Pi_i(\omega) = \omega_i$.

Definition Die **Produkt-** σ **-Algebra** $\mathcal{A} := \bigotimes_{i \in I} \mathcal{A}_i$ ist die kleinste σ -Algebra mit der Eigenschaft, dass für alle $i \in I$ die Abbildung Π_i $(\mathcal{A}, \mathcal{A}_i)$ -messbar ist. Genauer:

$$\mathcal{A} := \sigma \left(\bigcup_{i \in I} \left\{ \prod_{i=1}^{-1} (A_i) | A_i \in \mathcal{A}_i \right\} \right)$$

Bemerkung Sei $J \subset I$, $\Pi_J : \Omega \to \times_{i \in J} \Omega_i$, $\Pi_J(\omega)(j) = \omega_j$ $(j \in J)$ die Projektion auf die J-Koordinaten, so bildet

$$\left\{ \Pi_{J}^{-1}(A_{J}) | A_{J} \in \bigotimes_{i \in J} \mathcal{A}_{i}, J \subset I, J \text{ endlich} \right\}$$

ein durchschnittstabiles Erzeugendensystem von \mathcal{A} . Man nennt diese Mengen auch **Zylindermengen** mit endlicher Basis.

$$\left(A_{J} = A_{i_{1}} \times \dots \times A_{i_{|J|}}, \Pi_{J}^{-1}(A_{J}) = \bigcap_{k=1}^{|J|} \Pi_{i_{k}}^{-1}(A_{i_{k}})\right)$$

Beispiel 3.1 Ist $I = \{1, ..., n\}$ endlich, so ist (vgl. Stochastik I, $\S 8$):

$$\mathcal{A} = \bigotimes_{i=1}^{n} \mathcal{A}_i = \sigma\left(\left\{A_1 \times \dots \times A_n \middle| A_i \in \mathcal{A}_i, i \in \left\{1, \dots, n\right\}\right\}\right)$$

Wir betrachten zunächst den Fall |I|=2. Gegeben seien zwei Maßräume $(\Omega_1, \mathcal{A}_1, \mu_1)$ und $(\Omega_2, \mathcal{A}_2, \mu_2)$. Weiter sei $\Omega=\Omega_1 \times \Omega_2$, $\mathcal{A}=\mathcal{A}_1 \otimes \mathcal{A}_2$. Wir müssen nun ein Produktmaß konstruieren.

Lemma 3.1 Für alle $A \in \mathcal{A}$, $\omega_1 \in \Omega_1$, $\omega_2 \in \Omega_2$ gilt:

$$A_{\omega_1} := \{\omega_2 \in \Omega_2 | (\omega_1, \omega_2) \in A\} \in \mathcal{A}_2 \ und$$

$$A_{\omega_2} := \{\omega_1 \in \Omega_1 | (\omega_1, \omega_2) \in A\} \in \mathcal{A}_1.$$

 A_{ω_i} heißt ω_i -Schnitt von A für i = 1, 2.

- hier fehlt eine Skizze -

Beweis Sei $\omega_1 \in \Omega_1$. Dann ist $\mathcal{A}' := \{A \in \mathcal{A} | A_{\omega_1} \in \mathcal{A}_2\} \subset \mathcal{A}$, also die Menge der Mengen, für die das Lemma gilt, eine σ -Algebra, denn:

(i)

$$\Omega_{\omega_1} = \Omega_2 \in \mathcal{A}_2 \quad \Longrightarrow \quad \Omega \in \mathcal{A}'$$

(ii)

$$(\Omega \backslash A)_{\omega_1} = \{\omega_2 | (\omega_1, \omega_2) \notin A\}$$

$$= \{\omega_2 | (\omega_1, \omega_2) \in A\}^C$$

$$= \Omega_2 \backslash \underbrace{A_{\omega_1}}_{\in \mathcal{A}_2} \in \mathcal{A}_2$$

$$\implies (\Omega \backslash A)_{\omega_1} \in \mathcal{A}'.$$

(iii)

$$\left(\bigcup_{n=1}^{\infty} A_n\right)_{\omega_1} = \bigcup_{n=1}^{\infty} \left(A_n\right)_{\omega_1} \in \mathcal{A}_2 \implies \left(\bigcup_{n=1}^{\infty} A_n\right)_{\omega_1} \in \mathcal{A}'$$

Wegen
$$(A_1 \times A_2)_{\omega_1} = \begin{cases} A_2 &, \omega_1 \in A_1 \\ \emptyset &, \omega_1 \notin A_1 \end{cases} \in \mathcal{A}_2$$
 gilt:

$$\sigma(\{A_1 \times A_2 | A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}) \subset \mathcal{A}'$$
, also gilt $\mathcal{A} = \mathcal{A}'$

mit der Voraussetzung von oben. Aus Symmetriegründen gilt die entsprechende Aussage auch für A_{ω_2} , $\omega_2 \in \Omega_2$.

Lemma 3.2 Die Maße μ_1 , μ_2 seien σ -endlich. Dann gilt für alle $A \in \mathcal{A}$:

$$\omega_1 \mapsto \mu_2(A_{\omega_1}) \text{ ist } (\mathcal{A}_1, \mathfrak{B}_{(-\infty,\infty]})\text{-messbar},$$

$$\omega_2 \mapsto \mu_1(A_{\omega_2}) \text{ ist } (\mathcal{A}_2, \mathfrak{B}_{(-\infty,\infty]})\text{-messbar}.$$

Beweis μ_2 σ -endlich $\Longrightarrow \exists (B_n)_{n\in\mathbb{N}} \subset \mathcal{A}_2$ mit $B_n \uparrow \Omega_2$ und $\mu_2(B_n) < \infty \quad \forall n \in \mathbb{N}$. Setze $f_A(\omega_1) := \mu_2(A_{\omega_1}), f_{A,n}(\omega_1) := \mu_2(A_{\omega_1} \cap B_n)$. Sei $\mathcal{D} := \{D \in \mathcal{A} | f_{D,n} \text{ ist } (\mathcal{A}_1, \mathfrak{B})\text{-messbar}\}$ für ein festes n. Dann gilt:

(i)
$$f_{\Omega,n} = \mu_2(\Omega_2 \cap B_n) = \mu_2(B_n)$$

(ii)
$$f_{D^C,n} = \mu_2(B_n) - f_{D,n}$$
, also $D \in \mathcal{D} \implies D^C \in \mathcal{D}$

(iii)
$$f_{\sum_{i=1}^{\infty} D_i, n} = \sum_{i=1}^{\infty} f_{D_i, n}$$
, also $D_i \in \mathcal{D} \implies \sum_{i=1}^{\infty} D_i \in \mathcal{D}$

Damit ist \mathcal{D} ein Dynkin-System (vgl. Stochastik 1).

Wegen $f_{A_1\times A_2,n}(\omega_1)=\mu_2(A_2\cap B_n)\cdot \mathbf{1}_{A_1}(\omega_1)$ ist $f_{A_1\times A_2,n}$ für $A_1\in\mathcal{A}_1,\ A_2\in\mathcal{A}_2$ messbar und daher $A_1 \times A_2 \in \mathcal{D}$.

 \mathcal{D} enthält also das durchnittstabile Erzeugendensystem von \mathcal{A} .

$$\xrightarrow{\text{St.1, S.4.3}} \mathcal{D} = \mathcal{A} \implies f_{A,n} \text{ ist } (\mathcal{A}_1, \mathfrak{B}) \text{-messbar } \forall A \in \mathcal{A}, n \in \mathbb{N}.$$

Wegen $f_A = \sup_{n \in \mathbb{N}} \{f_{A,n}\}$ folgt die Behauptung.

Definition 3.1 und Satz:

Sind μ_1 , μ_2 σ -endlich, so existivit genau ein Maß μ auf $A_1 \otimes A_2$ mit $\mu(A_1 \times A_2) =$ $\mu_1(A_1) \cdot \mu_2(A_2) \ \forall A_1 \in \mathcal{A}_1, \forall A_2 \in \mathcal{A}_2. \ \mu \ hei\beta t \ \textbf{\textit{Produktma}} \ von \ \mu_1 \ und \ \mu_2, \ Schreib$ weise: $\mu = \mu_1 \otimes \mu_2$. Für μ qilt¹:

$$\mu(A) = \int \mu_2(A_{\omega_1}) \, \mu_1(d\omega_1) = \int \mu_1(A_{\omega_2}) \, \mu_2(d\omega_2) \quad \forall A \in \mathcal{A}$$

Schließlich ist μ auch σ -endlich.

Beweis Es seien wieder $f_A(\omega_1) = \mu_2(A_{\omega_1})$. Seien $A_n \in \mathcal{A}, n \in \mathbb{N}, A_n$ paarweise disjunkt und $\sum_{n=1}^{\infty} A_n = A$. Es folgt:

Außerdem ist $\int f_{\emptyset} d\mu_1 = \int 0 d\mu_1 = 0$.

Also ist $\Pi: \mathcal{A} \to [0, \infty]$, $\Pi(A) := \int f_A d\mu_1$ ein Maß auf \mathcal{A} . Nach Konstruktion gilt: $\Pi(A_1 \times A_2) = \int \mu_2(A_2) \cdot \mathbf{1}_{A_1} d\mu_1 = \mu_2(A_2) \cdot \mu_1(A_1).$

Analog ist $\Pi'(A) := \int \mu_1(A_{\omega_2}) \cdot \mu_2(d\mu_2)$ ein Maß mit $\Pi'(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2)$, d.h. Π und Π' stimmen auf dem durchschnittstabilen Erzeuger $\{A_1 \times A_2 | A_i \in \mathcal{A}_i\}$ überein. Der Eindeutigkeitssatz für Maße (vgl. Übung) liefert $\Pi = \Pi' =: \mu$ auf ganz \mathcal{A} . σ -Endlichkeit ist klar.

¹Anmerkung: $\int_{\Omega} f d\mu = \int f(\omega) \mu(d\omega)$

Wie integriert man bzgl. $\mu_1 \otimes \mu_2$? Ist $f: \Omega \to \mathbb{R}$ eine Abbildung, so sei

$$f_{\omega_1}: \quad \Omega_2 \to \mathbb{R}, \quad f_{\omega_1}(\omega_2) := f(\omega_1, \omega_2),$$

$$f_{\omega_2}: \quad \Omega_1 \to \mathbb{R}, \quad f_{\omega_2}(\omega_1) := f(\omega_1, \omega_2).$$

Lemma 3.3 Ist $f(\mathcal{A}, \mathfrak{B})$ -messbar, so ist $f_{\omega_1}(\mathcal{A}_2, \mathfrak{B})$ -messbar $\forall \omega_1 \in \Omega_1 \text{ und } f_{\omega_2} \text{ ist } (\mathcal{A}_1, \mathfrak{B})$ -messbar $\forall \omega_2 \in \Omega_2$.

Beweis

$$f_{\omega_{1}}^{-1}(B) = \{\omega_{2} \in \Omega_{2} | f(\omega_{1}, \omega_{2}) \in B\}$$

$$= (\{\omega \in \Omega | f(\omega) \in B\})_{\omega_{1}}$$

$$= \left(\underbrace{f^{-1}(B)}_{\in \mathcal{A}}\right)_{\omega_{1}} \in \mathcal{A}_{2} \quad \forall B \in \mathfrak{B}.$$

Satz 3.1 (Satz von Fubini, Teil I, auch: Satz von Tonelli)

Es seinen μ_1 und μ_2 σ -endlich sowie $f: \Omega \to \mathbb{R}_+$ $(\mathcal{A}, \mathfrak{B})$ -messbar². Dann ist

$$\omega_1 \mapsto \int f_{\omega_1} d\mu_2 \ (\mathcal{A}_1, \mathfrak{B}_{(-\infty,\infty]})$$
-messbar und $\omega_2 \mapsto \int f_{\omega_2} d\mu_1 \ (\mathcal{A}_2, \mathfrak{B}_{(-\infty,\infty]})$ -messbar und es gilt:

$$\int f d(\mu_1 \otimes \mu_2) = \int \left(\int f_{\omega_2} d\mu_1 \right) \mu_2 (d\omega_2) = \int \left(\int f_{\omega_1} d\mu_2 \right) \mu_1 (d\omega_1).$$

Beweis mit algebraischer Induktion.

(1) Falls $f = \sum_{i=1}^n \alpha_i \mathbf{1}_{A_i}$ erhält man mit $(\mathbf{1}_A)_{\omega_2}(\omega_1) = \mathbf{1}_{A_{\omega_2}}(\omega_1)$ die Beziehung

$$\int f_{\omega_2} d\mu_1 \stackrel{lin.}{=} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{(A_i)_{\omega_2}} d\mu_1 = \sum_{i=1}^n \alpha_i \mu_1 \left((A_i)_{\omega_2} \right)$$

$$\stackrel{\text{L.3.2}}{\Longrightarrow} \omega_2 \mapsto \int f_{\omega_2} d\mu_1 \text{ist messbar.}$$

$$\implies \int \left(\int f_{\omega_2} d\mu_1 \right) \mu_2 (d\omega_2) = \sum_{i=1}^n \alpha_i \int \mu_1 \left((A_i)_{\omega_2} \right) \mu_2 d(\omega_2)$$

$$\stackrel{D.3.1}{=} \sum_{i=1}^{n} \alpha_{i} \cdot \mu_{1} \otimes \mu_{2} (A_{i}) = \int f d (\mu_{1} \otimes \mu_{2}).$$

²Dass hier $f \geq 0$ gilt, ist wesentlich für Fubini I; den allgemeinen Fall behandelt Fubini II.

(2) $f \geq 0$, $f(\mathcal{A}, \mathfrak{B})$ -messbar.

 $\implies \exists (u_n)_{n\in\mathbb{N}} \subset \mathcal{E} \text{ mit } u_n \uparrow f \text{ und } \int f d\mu = \lim_{n\to\infty} (\int u_n d\mu).$

Wegen $(u_n)_{\omega_2} \uparrow f_{\omega_2}$ und $g_n(\omega_2) := \int (u_n)_{\omega_2} d\mu_1 \uparrow \int f_{\omega_2} d\mu_1 \forall \omega_2 \in \Omega_2$ ist nach Schritt $1 \int g_n(\omega_2) \mu_2(d\omega_2) = \int u_n d(\mu_1 \otimes \mu_2)$. Mit dem Satz von der monotonen Konvergenz folgt:

$$\int \left(\int f_{\omega_2} d\mu_1 \right) \mu_2 (d\omega_2) = \lim_{n \to \infty} \left(\int g_n d\mu_2 \right)
= \lim_{n \to \infty} \left(\int u_n d(\mu_1 \otimes \mu_2) \right)
= \int f d(\mu_1 \otimes \mu_2).$$

Wiederhole die Schritte mit ω_2 statt mit ω_1 und erhalte den Rest der Behauptung.

Bevor wir den Satz von Fubini für allgemeine f beweisen, benötigen wir folgende Überlegung:

Bemerkung 3.1 Ist $(\Omega, \mathcal{A}, \mu)$ Maßraum, $A \in \mathcal{A}$ mit $\mu(A^C) = 0$, $f : A \to \mathbb{R}$, so nennen wir $f(\mathcal{A}, \mathfrak{B})$ -messbar, μ -integrierbar, etc., wenn dies auf die folgende Fortsetzung \bar{f} von f zutrifft:

$$\bar{f}: \Omega \to \mathbb{R}, \ \bar{f}(\omega) := \begin{cases} f(\omega) & \omega \in A \\ 0 & \text{sonst} \end{cases}$$
 und schreiben dann $\int f \mathrm{d}\mu$ statt $\int \bar{f} \mathrm{d}\mu$.

Satz 3.2 (Satz von Fubini, Teil II)

Es seien μ_1 und μ_2 σ -endlich, $f: \Omega \to \mathbb{R}$ $(\mu_1 \otimes \mu_2)$ -integrierbar.

Dann sind μ_1 -fast alle f_{ω_1} μ_2 -integrierbar und μ_2 -fast alle f_{ω_2} μ_1 -integrierbar. Weiter sind die Integrale

$$\omega_1 \mapsto \int f_{\omega_1} d\mu_2$$

und

$$\omega_2 \mapsto \int f_{\omega_2} d\mu_1$$

als Funktionen von ω_1 bzw. ω_2 im obigen Sinne μ_1 - bzw. μ_2 -integrierbar und es gilt:

$$\int f d(\mu_1 \otimes \mu_2) = \int \left(\int f_{\omega_2} d\mu_1 \right) \mu_2 (d\omega_2) = \int \left(\int f_{\omega_1} d\mu_2 \right) \mu_1 (d\omega_1)$$

Beweis

Es gilt $|f|_{\omega_1} = |f_{\omega_1}|$, $f_{\omega_1}^+ = (f_{\omega_1})^+$ und $f_{\omega_1}^- = (f_{\omega_1})^-$. Also folgt aus Satz 3.1.:

$$\begin{split} \int |f| \mathrm{d}\mu &= \int \left(\int |f_{\omega_1}| \mathrm{d}\mu_2 \right) \mu_1 \left(\mathrm{d}\omega_1 \right) < \infty \text{ (das ist die Voraussetzung)} \\ &\Longrightarrow \quad \mu_1 \left(\left\{ \omega_1 | \int |f_{\omega_1}| \mathrm{d}\mu_2 = \infty \right\} \right) = 0 \\ &\Longrightarrow \quad f_{\omega_1} \text{ ist } \mu_1\text{-f.\"{u}. } \mu_2\text{-integrierbar.} \end{split}$$

Satz 3.1. angewandt auf $f_{\omega_1}^+$ und $f_{\omega_1}^-$ ergibt, dass

$$\omega_1 \mapsto \int f_{\omega_1} d\omega_2 = \left(\int f_{\omega_1}^+ d\mu_2 - \int f_{\omega_1}^- d\mu_2 \right)$$

 $(\mathcal{A}, \mathfrak{B})$ -messbar ist (auf einer μ_1 -Nullmenge könnte " $\infty - \infty$ " stehen und die Funktion wäre dort nicht definiert, siehe hierzu aber die vorstehende Bemerkung) und

$$\int \left(\int f_{\omega_1} d\mu_2 \right) \mu_1 (d\omega_1) = \int \left(\int f_{\omega_1}^+ d\mu_2 - \int f_{\omega_1}^- d\mu_2 \right) \mu_1 (d\omega_1)$$

$$= \int f^+ d\mu - \int f^- d\mu$$

$$= \int f d\mu.$$

Der Rest folgt mit dem Symmetrieargument.

Bemerkung 3.2

a) Der Satz von Fubini läßt sich wie folgt schreiben:

$$\int f d (\mu_1 \otimes \mu_2) = \int \int f (\omega_1, \omega_2) \mu_1 (d\omega_1) \mu_2 (d\omega_2)$$
$$= \int \int f (\omega_1, \omega_2) \mu_2 (d\omega_2) \mu_1 (d\omega_1)$$

Die Integrationsreihenfolge spielt also keine Rolle.

b) Sind messbare Räume $(\Omega_i, \mathcal{A}_i)$ $(i \in I)$ gegeben mit |I| endlich und |I| > 2, so erhält man ein Maß $\mu := \bigotimes_{i \in I} \mu_i$ auf der Produkt- σ -Algebra durch schrittweises Ausführen von Produkten mit 2 Faktoren. Insbesondere gilt auf Rechteckmengen $A_1 \times \cdots \times A_n$ mit $A_i \in \mathcal{A}_i$ $(i = 1, \dots, n)$:

$$\mu(A_1 \times \cdots \times A_n) = \prod_{i=1}^n \mu_i(A_i).$$

Da die Rechteckmengen ein durchschnittstabiler Erzeuger von \mathcal{A} sind, folgt wegen der Eindeutigkeit von μ :

$$(\mu_1 \otimes \mu_2) \otimes \mu_3 = \mu_1 \otimes (\mu_2 \otimes \mu_3)$$
 (Assoziativität des Maßprodukts)

Satz 3.3

 $Auf(\Omega, \mathcal{A})$ existiert genau ein Wahrscheinlichkeitsmaß $P := \bigotimes_{i \in I} P_i$ mit

$$P^{\Pi_J} = \bigotimes_{i \in I} P_i \quad \forall \, J \subset I, Jendlich.$$

Beweis Siehe z.B. Bauer, Henze, Stochastik II S.8.13.

$$\begin{array}{ccc}
\mu & \mu^T \\
(\Omega, \mathcal{A}) & \xrightarrow{T} & (\Omega', \mathcal{A}') \\
P & P^{\Pi_J} \\
(\Omega, \mathcal{A}) & \xrightarrow{\Pi_J} & (\times_{i \in J} \Omega_i, \otimes_{i \in J} \mathcal{A}_i)
\end{array}$$

z.B.
$$P((\times_{i \in J} A_i) \times (\times_{j \notin J} \Omega_j)) = \prod_{i \in J} P_i(A_i), \ A = \times_{i \in J} A_i$$

Definition Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $(\Omega'_i, \mathcal{A}'_i)$ ein messbarer Raum $\forall i \in I. \ X_i : \Omega \to \Omega'_i$ seien Zufallsgrößen. Die Familie $(X_i)_{i \in I}$ heißt **stochastisch unabhängig** genau dann, wenn $\forall J \subset I, J$ endlich und $\forall A'_i \in \mathcal{A}'_i, j \in J$

$$\underbrace{P(\cap_{j\in J}\{X_j\in A'_j\})}_{P^X(\times_{j\in J}A'_j\times\times_{i\notin J}\Omega_i)} = \prod_{j\in J}\underbrace{P(X_j\in A'_j)}_{P^{X_j}(A'_j)}$$

Bemerkung Bei der Überprüfung der Bedingung kann man sich auf $A_j \in \mathcal{E}_j$ beschränken, wobei \mathcal{E}_j ein durchschnittsstabiler Erzeuger von \mathcal{A}_j ist.

In der Situation der vorigen Definition gilt für $\Omega' := \times_{i \in I} \Omega_i$, $\mathcal{A}' := \otimes_{i \in I} \mathcal{A}_i$:

$$X: \Omega \to \Omega', \ (X(\omega))(i) := X_i(\omega), \ \forall i \in I, \omega \in \Omega$$

ist $(\mathcal{A}, \mathcal{A}')$ -messbar (vgl. Ü 2.1), d.h. X transportiert P zu einem Wahrscheinlichkeitsmaß P^X auf (Ω', \mathcal{A}') . P^X nennt man auch **gemeinsame Verteilung** der Zufallsgrößen $X_i, i \in I$.

Satz 3.4

Die Familie $X = (X_i)_{i \in I}$ ist genau dann unabhängig, wenn

$$P^X = \otimes_{i \in I} P^{X_i}$$

Beweis Folgt aus der Definition und S.3.3.

Bemerkung

- (i) Unabhängigkeit der $(X_i)_{i\in I}$ ist äquivalent dazu, dass jede endliche Teilfamilie $(X_i)_{i\in J}, J\subset I, (J \text{ endlich}), unabhängig ist.$
- (ii) Sei $\Omega'_i = \mathbb{R}, X = (X_1, \dots, X_d)$ ein Zufallsvektor und $x = (x_1, \dots, x_d) \in \mathbb{R}^d$. $F_X(x_1, \dots, x_d) = P^X((-\infty, x_1] \times \dots \times (-\infty, x_d]) = P(X_1 \leq x_1, \dots, X_d \leq x_d)$ ist die gemeinsame Verteilungsfunktion. Da $\mathcal{E} = \{(-\infty, x] : x \in \mathbb{R}^d\}$ durchschnittsstabiler Erzeuger von \mathfrak{B}^d ist, sind

 X_1, \ldots, X_d unabhängig $\iff F_X(x_1, \ldots, x_d) = F_{X_1}(x_1) \cdots F_{X_d}(x_d) \ \forall x \in \mathbb{R}^d$. Falls Dichten existieren:

 X_1,\ldots,X_d unabhängig $\iff f_X(x_1,\ldots,x_d)=f_{X_1}(x_1)\cdots f_{X_d}(x_d) \ \forall \, x\in\mathbb{R}^d$

(iii) Als Wahrscheinlichkeitsraum für das Experiment " ∞ -oft Münze werfen" kann man z.B. $\Omega = \{0,1\}^{\mathbb{N}}, \mathcal{A} = \bigotimes_{i \in \mathbb{N}} \mathcal{P}(\{0,1\}), P = \bigotimes_{i \in \mathbb{N}} (\frac{1}{2}(\delta_0 + \delta_1))$ wählen. S.3.3 impliziert, dass es zu jedem vorgegebenen Wahrscheinlichkeitsmaß eine Folge von unabhängigen und indentisch verteilten Zufallsvektoren gibt. Man kann beim Münzexperiment auch $([0,1),\mathfrak{B}_{[0,1)},\lambda_{[0,1)}), X_n(\omega) = \lfloor 2^n \cdot \omega \rfloor \mod 2$ wählen. (vgl. Bsp 13.2 St I)

3.2 Reellwertige Abbildungen, Rechnen mit Verteilungen

Wir betrachten den Spezialfall $(\Omega_i, \mathcal{A}_i, \mu_i) = (\mathbb{R}, \mathfrak{B}, \lambda)$ für $i = 1, \ldots, d$. Hier folgt: $\Omega = \mathbb{R}^d, \mathcal{A} = \bigotimes_{i=1}^d \mathcal{A}_i = \sigma(\{(a_1, b_1] \times \cdots \times (a_d, b_d] : a_i \leq b_i, \ a_i, b_i \in \mathbb{R}, \ i = 1, \ldots, d\}) = \mathfrak{B}^d$.

 $P = \lambda^d, \lambda^d((a_1, b_1] \times \cdots \times (a_d, b_d]) = \prod_{i=1}^d (b_i - a_i) = \text{Volumen.}$ Was passiert, wenn (a, b] mit einer Abbildung Ψ transformiert wird?

Satz 3.5 (Transformationssatz für das d-dimensionale Lebesgue-Maß)

Es seien $U, V \subset \mathbb{R}^d$ offen und $\Psi: U \to V$ eine bijektive, stetig differenzierbare Abbildung. Gilt dann $\det(\Psi')(x) \neq 0 \ \forall \ x \in U$, so hat das Bildmaß der Einschränkung von λ^d auf U unter Ψ bzgl. der Einschränkung von λ^d auf V die Dichte

$$\frac{d(\lambda_U^d)^{\Psi}}{d\lambda_V^d}(y) = \frac{1}{|\det \Psi'(\Psi^{-1}(y))|} \ \forall y \in V.$$

Beweis Henze, Stochastik II.

Bemerkung

(a) Unter den Voraussetzungen von S.3.5 ist auch Ψ^{-1} stetig differenzierbar und die Kettenregel liefert:

$$\det(\Psi'(\Psi^{-1})(y)) \cdot \det((\Psi^{-1})')(y) = 1.$$

Es gilt also

$$\frac{d(\lambda_U^d)^{\Psi}}{d\lambda_V^d}(y) = |\det(\Psi^{-1})'(y)| \ \forall y \in V.$$

(b) Mit S.2.4 gilt:

$$\int_{U} f(\Psi(x)) dx \stackrel{S.2.4}{=} \int_{V} f(y) d(\lambda_{U}^{d})^{\Psi} = \int_{V} f(y) |\det(\Psi^{-1})'(y)| dy$$

bzw.

$$\int_{U} g(x) dx = \int_{V} g(\Psi^{-1}(y)) | \det(\Psi^{-1})'(y) | dy$$

Beispiel 3.2 Transformation auf Polarkoordinaten

Hier: d=2. $U = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0 \text{ oder } x_2 \neq 0\}, \ V = (0, \infty) \times (-\pi, \pi), \ \Psi : U \to V, (x_1, x_2) \xrightarrow{\Psi} (r, \Phi) \text{ bijektiv. } (\Psi^{-1})_1(r, \Phi) = r \cos \Phi, (\Psi^{-1})_2(r, \Phi) = r \sin \Phi.$

$$\implies (\Psi^{-1})'(r,\Phi) = \begin{pmatrix} \cos \Phi & -r\sin \Phi \\ \sin \Phi & r\cos \Phi \end{pmatrix}$$

$$\implies \frac{\mathrm{d}(\lambda_U^d)^{\Psi}}{\mathrm{d}(\lambda_V^d)} = r\cos^2\Phi + r\sin^2\Phi = r \ \forall \, (r, \Phi) \in V.$$

Wir bekommen:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1, x_2) dx_1 dx_2 = \int_{-\pi}^{\pi} \int_{0}^{\infty} r \cdot g(r \cos \Phi, r \sin \Phi) dr d\Phi$$

Im Folgenden sei $X = (X_1, \dots, X_d) : \Omega \to \mathbb{R}^d$ ein Zufallsvektor.

Satz 3.6 (Transformationssatz für Wahrscheinlichkeitsdichten)

Es seien U und V offene Teilmengen von \mathbb{R}^d und $\Psi: U \to V$ eine bijektive, stetige und differenzierbare Abbildung mit der Eigenschaft

$$\det \Psi'(x) \neq 0 \quad \forall x \in U.$$

Ist dann X ein Zufallsvektor auf (Ω, \mathcal{A}, P) mit $P(X \in U) = 1$ und Dichte f_X , so ist auch $Y := \Psi(X)$ absolutstetig und eine Dichte f_Y von Y auf V ist gegeben durch

$$f_Y(y) = |\det(\Psi^{-1})'(y)| f_X(\Psi^{-1}(y)) \quad \forall y \in V$$

Beweis Seien $A \subset V, A \in \mathfrak{B}^d$. Mit Satz 3.5 folgt:

$$\begin{split} P(Y \in A) &= P(X \in \Psi^{-1}(A)) \\ &= \int_{U} \mathbf{1}_{\Psi^{-1}(A)}(x) f_{X}(x) \mathrm{d}x \\ &= \int_{V} \mathbf{1}_{\Psi^{-1}(A)}(\Psi^{-1}(y)) f_{X}(\Psi^{-1}(y)) \cdot |\det(\Psi^{-1})'(y)| \mathrm{d}y \\ &= \int_{A} |\det(\Psi^{-1})'(y)| f_{X}(\Psi^{-1}(y)) \mathrm{d}y \end{split}$$

Beispiel 3.3 (Box-Muller-Algorithmus zur Erzeugung von N(0,1)-verteilten Zufallsvariablen)

Seien $U_1, U_2 \sim U(0,1)$ und unabhängig. Definiere:

$$X_1 := \sqrt{-2\log(U_1)}\cos(2\pi U_2) = \Psi_1(U_1, U_2)$$

$$X_2 := \sqrt{-2\log(U_1)}\sin(2\pi U_2) = \Psi_2(U_1, U_2)$$

Dann sind $X_1, X_2 \sim N(0,1)$ und unabhängig. Beweis mit Satz 3.6. Sei $U = (0,1)^2$

$$V = \{(X_1, X_2) \in \mathbb{R}^2 | X_1 < 0 \text{ oder } X_2 \neq 0\}$$

$$\Psi'(u) = \begin{pmatrix} -(-2\log(u_1))^{-\frac{1}{2}} \frac{\cos(2\pi u_2)}{u_1} & -(-2\log u_1)^{\frac{1}{2}} 2\pi \sin(2\pi u_2) \\ -(-2\log(u_1))^{-\frac{1}{2}} \frac{\sin(2\pi u_2)}{u_1} & (-2\log u_1)^{\frac{1}{2}} 2\pi \cos(2\pi u_2) \end{pmatrix}$$

$$\Longrightarrow \det \Psi' = -\frac{2\pi}{u_1} \text{ und}$$

$$u_1 = e^{-\frac{1}{2}(x_1^2 + x_2^2)}$$

$$\Longrightarrow f_X(x) = \frac{1}{|\det \Psi'(\Psi^{-1}(x))|} \cdot 1$$

$$= \frac{1}{2\pi} e^{-\frac{1}{2}(x_1^2 + x_2^2)}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x_1^2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x_2^2}$$

⇒ Behauptung

Satz 3.7

Sind X und Y unabhängige Zufallsvariablen mit Dichten f_X und f_Y , so ist auch die Zufallsvariable Z := X + Y absolutstetig und eine zugehörige Dichte ist gegeben durch:

$$f_Z(z) = \int f_X(x) \cdot f_Y(z-x) dx$$
 "Faltung"

Beweis Verwende Satz 3.6 mit $\Psi: \mathbb{R}^2 \to \mathbb{R}^2, \Psi(x,y) = (x,x+y) \ (\Psi^{-1}(x,z) = (x,z-x))$

$$\implies f_{X,Z}(x,z) = f_{X,Y}(x,z-x) = f_X(x) \cdot f_Y(z-x)$$

Die "Randdichte" f_Z bekommt man durch Integration über x.

Beispiel 3.4 a) Sind die Zufallsvariablen X_1, \ldots, X_d unabhängig und $X_i \sim \exp(\lambda), i = 1, \ldots, d, \lambda > 0$, so hat $X_1 + \ldots + X_d$ die Dichte

$$f_{X_1+\ldots+X_d}(z) = \frac{\lambda^d}{(d-1)!} z^{d-1} e^{-\lambda z} \mathbf{1}_{[0,\infty)}(z)$$

 $(\rightarrow Gamma-Verteilung bzw. Erlang-Verteilung)$

b) Sind X_1, \ldots, X_d unabhängig und $X_i \sim N(\mu_i, \sigma_i^2), a_i \in \mathbb{R}, i = 1, \ldots, d$ so gilt falls $\sum a_i^2 \neq 0$

$$\sum_{i=1}^{d} a_i X_i \sim N(\sum_{i=1}^{d} a_i \mu_i, \sum_{i=1}^{d} a_i^2 \sigma_i^2)$$

Beispiel 3.5 (Gemeinsame Verteilung der Ordnungsstatistiken)

Es seien X_1, \ldots, X_d unabhängige und identisch verteilte Zufallsvariablen mit Dichte f. Weiter sei $(X_{1:d}, \ldots, X_{d:d})$ eine Permutation von X_1, \ldots, X_d , so dass

$$X_{1:d} < \ldots < X_{d:d}$$

 $X_{r:d}$ heißt r-te Ordnungsstatistik von X.

Sei S_d die Menge der Permutationen der Zahlen $1, \ldots, d$. Dann gilt für $\pi \in S_d$:

$$(X_{1:d}, \dots, X_{d:d}) = (X_{\pi(1)}, \dots, X_{\pi(d)}), \text{ falls } X_{\pi(1)} < \dots < X_{\pi(d)}$$

Für jede messbare Funktion $g: \mathbb{R}^d \to \mathbb{R}$ gilt:

$$g(X_{1:d}, \dots, X_{d:d}) = \sum_{\pi \in S_d} g(X_{\pi(1)}, \dots, X_{\pi(d)}) \cdot \mathbf{1}_{[X_{\pi(1)} < \dots < X_{\pi(d)}]}$$

Es gilt:

$$f_{X_{\pi(1)},\dots,X_{\pi(d)}}(x_1,\dots,x_d) = \prod_{i=1}^d f(x_i) = f_X(x)$$

Also folgt:

$$Eg(X_{1:d}, \dots, X_{d:d}) = \sum_{\pi \in S_d} \int_{x_1 < \dots < x_d} g(x) \prod_{i=1}^d f(x_i) dx_1 \dots dx_d$$
$$= d! \int_{\mathbb{R}^d} g(x) \prod_{i=1}^d f(x_i) \mathbf{1}_{[x_1 < \dots < x_d]}(x) dx_1 \dots dx_d$$

Sei $g(x) = \mathbf{1}_B(x)$ mit $B \in \mathfrak{B}^d$, dann folgt:

$$f_{X_{1:d},...,X_{d:d}}(x_1,...,x_d) = d! \prod_{i=1}^d f(x_i) \mathbf{1}_{[x_1 < ... < x_d]}(x)$$

Konkrete Anwendung:

Gegeben 12 Trinkgläser. Lebensdauer unabhängig $\exp(\lambda)$ -verteilt. Nach der vorigen Überlegung gilt

$$f_{(X_{1:d},...,X_{d:d})}(x) = \begin{cases} d!\lambda^d e^{-\lambda(x_1+...+x_d)} &, \text{falls } x_1 < ... < x_d \\ 0 &, \text{sonst} \end{cases}$$

$$\implies f_{(X_{1:d},X_{2:d})}(x) = \begin{cases} d(d-1)\lambda^2 e^{-(d-2)\lambda x_2} e^{-\lambda(x_1+x_2)} &, \text{falls } x_1 < x_2 \\ 0 &, \text{sonst} \end{cases}$$

$$\xrightarrow{\text{Satz 3.6}} f_{(X_{2:d}-X_{1:d},X_{1:d})}(y_1,y_2) = \begin{cases} d(d-1)\lambda^2 e^{-d\lambda y_2} e^{-(d-1)\lambda y_1} &, \text{falls } y_1, y_2 > 0 \\ 0 &, \text{sonst} \end{cases}$$

$$\implies f_{X_{2:d}-X_{1:d}}(y_1) = \begin{cases} (d-1)\lambda e^{-(d-1)\lambda y_1} &, \text{falls } y_1 > 0 \\ 0 &, \text{sonst} \end{cases}$$

$$f_{X_{1:d}}(y_2) = \begin{cases} d\lambda e^{-d\lambda y_2} &, \text{falls } y_2 > 0 \\ 0 &, \text{sonst} \end{cases}$$

also $X_{1:d} \sim \exp(\lambda d), X_{2:d} - X_{1:d} \sim \exp(\lambda (d-1))$ und unabhängig.

$$\implies X_{k:d} - X_{(k-1):d} \sim \exp((d-k+1)\lambda)$$

Es folgt:

$$E[X_{k:d} - X_{(k-1):d}] = \frac{1}{(d-k+1)\lambda}$$

$$\Longrightarrow \frac{E[X_{d:d} - X_{(d-1):d}]}{EX_{d:d}} = \frac{\frac{1}{\lambda}}{\sum_{k=1}^{d} \frac{1}{(d-k+1)\lambda}}$$

$$= \left(\sum_{k=1}^{d} \frac{1}{k}\right)^{-1}$$

$$= (\log d)^{-1} + O(1)$$

Für d=12:0.32

4 Das starke Gesetz der großen Zahlen

Satz 4.1 (Borel-Cantelli Lemma) $Sei(\Omega, \mathcal{A}, P)$ ein Wahrscheinlichkeitsraum und $(A_n)_{n \in \mathbb{N}} \subset \mathcal{A}$ eine Folge von Ereignissen.

$$\limsup_{n\to\infty}A_n:=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k$$

ist das Ereignis, dass unendlich viele der A_n 's eintreten.

a) Dann gilt:

$$\sum_{n=1}^{\infty} P(A_n) < \infty \Longrightarrow P(\limsup_{n \to \infty} A_n) = 0.$$

b) Sind die Ereignisse A_n , $n \in \mathbb{N}$ stochastisch unabhängig, so gilt:

$$\sum_{n=1}^{\infty} P(A_n) = \infty \Longrightarrow P(\limsup_{n \to \infty} A_n) = 1.$$

Beweis

a) Sei $B_n := \bigcup_{k=n}^{\infty} A_k$, $n \in \mathbb{N} \Rightarrow P(B_n) \leq \sum_{k=n}^{\infty} P(A_k) \stackrel{n \to \infty}{\longrightarrow} 0$. Da $B_n \downarrow \bigcap_{n=1}^{\infty} B_n$ folgt:

$$P(\limsup_{n \to \infty} A_n) = P(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to \infty} P(B_n) = 0.$$

b) Sei $P_n := P(A_n), \ n \in \mathbb{N}.(A_n)$ stoch. unabh $\Rightarrow (A_n^c)$ stoch unabh. Es gilt:

$$0 \leq P(\bigcap_{n=1}^{\infty} A_k^c) \quad \stackrel{\text{stetig von oben}}{=} \quad \lim_{N \to \infty} P(\bigcap_{n=1}^N A_k^c)$$

$$\stackrel{\text{unabh.}}{=} \quad \lim_{N \to \infty} \prod_{k=1}^N (1 - P_k)$$

$$\leq \quad \lim_{N \to \infty} \exp(-\sum_{k=1}^N P_k) \stackrel{\text{nach Vor.}}{=} 0$$

Somit:

$$0 \le P((\limsup_{n \to \infty} A_n)^c) = P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c) \le \sum_{n=1}^{\infty} P(\bigcap_{k=n}^{\infty} A_k^c) = 0$$

Definition Es seien X, X_1, X_2, \ldots ZV auf einem W'Raum (Ω, \mathcal{A}, P) . X_n konvergiert P-fast sicher gegen $X, (X_n \xrightarrow{f.s.} X)$ wenn gilt:

$$P\left(\left\{\omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

Bemerkung $\{\lim_{n\to\infty} X_n(\omega) = X(\omega)\} \in \mathcal{A}, \text{ denn:}$

(i) $\sup_{n\geq 1} X_n$ ist \mathcal{A} -messbar, da $\{\sup_{n\geq 1} X_n \leq a\} = \bigcap_{n=1}^{\infty} \underbrace{\{X_n \leq a\}}_{\in \mathcal{A}} \in \mathcal{A}$. $\inf_{n\geq 1} X_n = -\sup_{n\geq 1} (-X_n)$ ist \mathcal{A} -mb. $\Rightarrow \limsup_{n\to\infty} X_n = \inf_{n\geq 1} \sup_{k\geq n} X_k, \liminf_{n\to\infty} X_n$ \mathcal{A} -messbar.

(ii)
$$\{\lim_{n\to\infty} X_n = X\} = (\liminf_{n\to\infty} (X_n - X))^{-1} (\{0\}) \cap (\limsup_{n\to\infty} (X_n - X))^{-1} (\{0\}) \in \mathcal{A}$$

Im Folgenden sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von ZV auf einem W'Raum (Ω, \mathcal{A}, P) . Starke Gesetz der großen Zahlen sind Resultate der Form

$$\frac{1}{a_n} \left(\sum_{i=1}^n X_i - b_n \right) \stackrel{f.s.}{\to} 0$$

wobei $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Der wichtigste Satz ist hier:

Satz 4.2 (Starkes Gesetz der großen Zahlen) $Ist(X_n)_{n\in\mathbb{N}}$ eine Folge von u.i.v. ZV mit $E|X_1| < \infty$, so gilt:

$$\frac{1}{n} \sum_{n=1}^{n} X_i \stackrel{f.s.}{\to} EX_1.$$

Beweis Sei zunächst $X_k \geq 0 \ \forall k \in \mathbb{N}$ und $Y_k := X_k \cdot \mathbf{1}_{[X_k \leq k]} \ (Y_k \text{ entsteht aus } X_k \text{ durch Abschneiden bei } k)$. Sei $S_n^* := \sum_{k=1}^n Y_k \ EY_k = E[X_k \cdot \mathbf{1}_{[X_k \leq k]}] = E\left[X_1 \cdot \mathbf{1}_{[X_1 \leq k]}\right] \overset{k \to \infty}{\longrightarrow} EX_1 \text{ mit S.2.1 (Monotone Konvergenz)}.$ Aus der Analysis: Sei $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n a_k = a.$$

Damit folgt:

$$\lim_{n \to \infty} \frac{1}{n} E S_n^* = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n E Y_k = E X_1.$$

Die Y_n 's sind wieder unabhängig und es gilt:

$$\operatorname{Var}(S_n^*) = \sum_{k=1}^n \operatorname{Var}(Y_k) \le \sum_{k=1}^n EY_k^2 \le \sum_{k=1}^n E[X_k^2 \cdot \mathbf{1}_{[X_k \le n]}] = n \cdot E[X_1^2 \cdot \mathbf{1}_{[0,n]}(X_1)] \ (*)$$

Sei $\alpha > 1$ und $m_n := \lfloor \alpha^n \rfloor \ \forall n \in \mathbb{N}$. Für x > 0 sei $\Psi(x) := \sum_{n=N(x)}^{\infty} \frac{1}{m_n}$ mit $N(x) := \min\{n \mid m_n \geq x\}$

Für beliebige $z \ge 1$ gilt: $\lfloor z \rfloor \ge \frac{z}{2}$ und somit $\frac{1}{m_n} = \frac{1}{\lfloor \alpha^n \rfloor} \le \frac{2}{\alpha^n}$ und $\alpha^{N(x)} \ge \lfloor \alpha^{N(x)} \rfloor = m_{N(x)} \ge x$. Mit $k := \frac{2\alpha}{\alpha - 1}$ gilt:

$$\Psi(x) = \sum_{n=N(x)}^{\infty} \frac{1}{m_n} \le 2 \cdot \sum_{n=N(x)}^{\infty} \frac{1}{\alpha^n} = 2 \cdot \alpha^{-N(x)} \cdot \frac{1}{1 - \frac{1}{\alpha}} \le \frac{k}{x} \ (**)$$

Die Ungleichung von Tschebyscheff liefert $\forall \varepsilon > 0$:

$$\begin{split} \sum_{n=1}^{\infty} P\left(\frac{1}{m_n}|S_{m_n}^* - ES_{m_n}^*| > \varepsilon\right) &\overset{(*)}{\leq} &\sum_{n=1}^{\infty} \frac{1}{\varepsilon^2 m_n} E[X_1^2 \cdot \mathbf{1}_{[0,m_n]}(X_1)] \\ &\overset{\mathrm{S.2.1}}{=} &\frac{1}{\varepsilon^2} E[X_1^2 \sum_{n=1}^{\infty} \frac{1}{m_n} \cdot \mathbf{1}_{[0,m_x]}(X_1)] \\ &= &\frac{1}{\varepsilon^2} E[X_1^2 \Psi(X_1)] \overset{(**)}{\leq} \frac{k}{\varepsilon^2} EX_1 \end{split}$$

$$\stackrel{\ddot{\coprod}b}{\Longrightarrow} \frac{1}{m_n} (S_{m_n}^* - ES_{m_n}^*) \stackrel{f.s.}{\Longrightarrow} 0 \stackrel{\ddot{\coprod}b}{\Longrightarrow} \frac{1}{m_n} S_{m_n}^* \stackrel{f.s.}{\Longrightarrow} EX_1.$$

Nächstes Ziel: * weg bekommen.

Es gilt:

$$\sum_{n=1}^{\infty} P(X_n \neq Y_n) = \sum_{n=1}^{\infty} P(X_1 > n)$$

$$\leq \int_{[0,\infty]} P(X_1 > x) \mathbf{1}(x) \stackrel{\text{Bsp 3.1}}{=} EX_1 < \infty.$$

$$\overset{S.4.1a)}{\Longrightarrow} P(\underbrace{\{\omega \in \Omega \,|\, X_n(\omega) \neq Y_n(\omega) \text{ für unendlich viele } n\}}_{=:N_0}) = 0$$

 $\forall \, \omega \not\in N_0 \, \exists \, k(\omega) \in \mathbb{N} \text{ mit } X_n(\omega) = Y_n(\omega) \, \, \forall \, n \geq k(\omega).$ Auf N_0^C gilt also:

$$\frac{1}{n}(S_n(\omega) - S_n^*(\omega)) = \frac{1}{n}(\sum_{i=1}^{k(\omega)} X_i(\omega) - Y_i(\omega)) \stackrel{n \to \infty}{\to} 0$$

$$\implies \frac{1}{n}(S_n - S_n^*) \stackrel{f.s.}{\to} 0 \implies \frac{1}{m_n} S_{m_n} \stackrel{f.s.}{\to} EX_1 \quad (\Delta)$$

Jetzt muss die Einschränkung auf die Teilfolge $(m_n)_{n\in\mathbb{N}}$ weg. Da $S_n \geq 0$, gilt für $m_n \leq k \leq m_{n+1}$:

$$\frac{m_n}{m_{n+1}} \cdot \frac{S_{m_n}}{m_n} \le \frac{S_k}{k} \le \frac{m_{n+1}}{m_n} \cdot \frac{S_{m_{n+1}}}{m_{n+1}}$$

Da $\frac{m_{n+1}}{m_n} \stackrel{n \to \infty}{\to} \alpha$ folgt mit (Δ) :

$$\frac{1}{\alpha}EX_1 \leq \liminf_{k \to \infty} \left(\frac{S_k}{k}\right) \leq \limsup_{k \to \infty} \left(\frac{S_k}{k}\right) \leq \alpha EX_1 \quad P\text{-f.s.}$$

Sei N_{α} die Ausnahmemenge zu α in der Konvergenz (Δ). Da $\alpha > 1$ beliebig, gilt auf $(\underbrace{\bigcup_{j=1}^{}N_{1+\frac{1}{j}}}_{P\text{-Nullmenge}})^{C}$:

$$EX_1 \le \liminf_{k \to \infty} (\frac{S_k}{k}) \le \limsup_{k \to \infty} (\frac{S_k}{k}) \le EX_1$$

$$\implies \overline{X_n} := \frac{1}{n} S_n \stackrel{f.s.}{\to} EX_1$$

Jetzt muss noch die Bedingung $X_k \ge 0$ weg. Es folgt:

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k^+ - \frac{1}{n} \sum_{k=1}^n X_k^- \stackrel{f.s.}{\to} EX_1^+ - EX_1^- = EX_1.$$

Beispiel 4.1 (Wiederholte Spiele)

Gegeben 2 Spieler. Spieler A erzielt in Runde $n X_n$ Punkte und Spieler B Y_n Punkte. Die Zufallsvariablen seien alle unabhängig und identisch verteilt. Es sei $D_n := X_n - I_n$ Y_n . Spieler A gewinnt Runde n, falls $D_n > 0$.

Sei $p_n = P(\sum_{k=1}^n D_k > 0)$ die Wahrscheinlichkeit, dass Spieler A nach n Runden mehr Punkte hat. Es gilt nach S.4.2:

$$\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{[D_k > 0]} \stackrel{f.s.}{\to} E\left[\mathbf{1}_{[D_1 > 0]}\right] = p_1.$$

Ist $p_1 > \frac{1}{2}$, so gewinnt Spieler A langfristig mehr Runden als B. Dies gilt jedoch nicht, wenn die Punkte addiert werden! Beispiel dazu:

$$X_k := \begin{cases} n+1, & \text{mit Wahrscheinlichkeit } p_1 \\ 0, & \text{mit Wahrscheinlichkeit } 1-p_1 \end{cases}, \quad Y_k \equiv n \text{ mit Wahrscheinlichkeit } 1$$

Sei
$$p_1 = 0,999, n = 1000. \implies p_{1000} = (0,999)^{1000} \approx 0,37$$

5 Zentraler Grenzwertsatz von Lindeberg-Lévy

5.1 Charakteristische Funktionen

Definition

Es sei X Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Dann heißt

$$\phi_X(t) := Ee^{itX} = E\cos(tX) + iE\sin(tX)$$

die charakteristische Funktion zu X.

Bemerkung

Ist X diskret mit Werten x_1, x_2, \ldots , so gilt:

$$\phi_X(t) = \sum_{k=1}^{\infty} e^{itx_k} \cdot P(X = x_k)$$

Ist X absolutstetig mit Dichte f, so gilt:

$$\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$
 (Fourier-Transformation)

Beispiel 5.1

a)
$$X \sim B(n, p)$$

$$\phi_X(t) = \sum_{k=0}^n e^{itk} \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} (pe^{it})^k (1-p)^{n-k} = (1-p+pe^{it})^n$$

b) $X \sim U(0, 1)$ $\phi_X(0) = 1$ und für $t \neq 0$:

$$\phi_X(t) = \int_0^1 e^{itx} \cdot 1 dx = \int_0^1 \cos(tx) dx + i \int_0^1 \sin(tx) dx$$
$$= \frac{1}{t} \sin(t) - \frac{i}{t} \cos(t) + \frac{i}{t} = \frac{1}{it} (e^{it} - 1)$$

c)
$$X \sim N(0,1)$$

$$\phi_X(t) = e^{-\frac{t^2}{2}} \quad \text{vgl. Stochastik 1}$$

Satz 5.1 Sind X, Y unabhängige Zufallsvariablen mit charakteristischen Funktionen ϕ_X und ϕ_Y , so gilt für die charakteristische Funktion ϕ_{X+Y} der Faltung:

$$\phi_{X+Y}(t) = \phi_X(t) \cdot \phi_Y(t) \quad \forall t \in \mathbb{R}$$

Beweis vgl. Stochastik 1, Satz 12.2.

Lemma 5.1 Für alle $m \in \mathbb{N}, t \in \mathbb{R}$ qilt:

$$\left| e^{it} - \sum_{k=0}^{m-1} \frac{(it)^k}{k!} \right| \le \min\left\{ \frac{|t|^m}{m!}, \frac{2|t|^{m-1}}{(m-1)!} \right\}$$

Beweis vgl. Stochastik 1, Satz 13.2.

5.2 Umkehrsätze

Wir werden sehen, dass eine Verteilung eindeutig durch ihre charakteristische Funktion festgelegt ist. Hat man z.B. gezeigt, dass X die charakteristische Funktion $(1 - p + pe^{it})^n$ hat, so ist $X \sim B(n, p)$.

Aus der Analysis ist die Integralsinusfunktion bekannt:

$$Si: \mathbb{R}_+ \to \mathbb{R}_+, \ Si(x) := \int_0^x \frac{\sin(y)}{y} dy \quad \forall x > 0$$

Es gilt: $\lim_{x\to\infty} (Si(x)) = \frac{\pi}{2}$

Satz 5.2

Es sei X Zufallsvariable mit charakteristischer Funktion ϕ_X . Dann gilt für alle $-\infty < a < b < \infty$:

$$\frac{1}{2}P(X = a) + P(a < X < b) + \frac{1}{2}P(X = b) = \lim_{T \to \infty} \left(\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt\right)$$

Beweis

Sei $I(T) := \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt$. Definiere $\psi : \mathbb{R} \times [-T, T] \to \mathbb{C}$ durch

$$\psi(t,x) := \begin{cases} \frac{e^{-it(a-x)} - e^{-it(b-x)}}{it}, & t \neq 0\\ b-a, & t = 0 \end{cases}$$

Mit Lemma 5.1 folgt, dass ψ stetig ist und wegen

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \right| = \left| \int_a^b e^{ity} dy \right| \le b - a$$

ist $|\psi| \leq b - a$, also ist ψ $P^X \otimes \lambda_{[-T,T]}$ -integrierbar. Mit Satz 3.1 (Fubini I) folgt:

$$I(T) = \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \left(\int e^{itx} P^{X}(\mathrm{d}x) \right) \mathrm{d}t$$
$$= \frac{1}{2\pi} \int \underbrace{\int_{-T}^{T} \frac{1}{it} \left(e^{-it(a-x)} - e^{-it(b-x)} \right) \mathrm{d}t}_{=:\psi_{a,b,T}(x)} P^{X}(\mathrm{d}x)$$

Inneres Integral:

 $\overline{\text{Da } t \mapsto \frac{\cos(t(x-a))}{it}}$ punktsymmetrisch ist, gilt:

$$\psi_{a,b,T}(x) = 2 \cdot \int_0^T \frac{1}{t} \sin((x-a)t) dt - 2 \cdot \int_0^T \frac{1}{t} \sin((x-b)t) dt$$

Es gilt weiterhin:

$$c \cdot \int_0^T \frac{1}{c \cdot t} \sin(ct) dt = \operatorname{sgn}(c) \cdot Si(T|c|) \quad \operatorname{mit} \operatorname{sgn}(c) = \begin{cases} 1, & c > 0 \\ 0, & c = 0 \\ -1, & c < 0 \end{cases}$$

$$\implies \psi_{a,b,T}(x) = 2 \cdot \operatorname{sgn}(x - a) Si(T|x - a|) - 2 \cdot \operatorname{sgn}(x - b) Si(T|x - b|)$$

$$\implies \psi_{a,b}(x) := \lim_{T \to \infty} (\psi_{a,b,T}(x)) = \begin{cases} 0, & x < a \text{ oder } x > b \\ \pi, & x = a \text{ oder } x = b \\ 2\pi, & a < x < b \end{cases}$$

 $\implies (\psi_{a,b,T})_{T\geq 0}$ besitzt eine (konstante) integrierbare Majorante. Mit dem Satz über die majorisierte Konvergenz gilt:

$$\lim_{T \to \infty} I(T) = \frac{1}{2\pi} \int \psi_{a,b}(x) P^X(dx)$$
$$= \frac{1}{2} P(X = a) + \frac{1}{2} P(X = b) + P(a < X < b)$$

Korollar 5.1

 $Sind\ X\ und\ Y\ Zufallsvariablen\ mit\ derselben\ charakteristischen\ Funktion,\ so\ haben\ X\ und\ Y\ dieselbe\ Verteilung.$

Beweis Sei $D=A(X)\cup A(Y)$ mit $A(X)=\{x\in\mathbb{R}|P(X=x)>0\}$, analog A(Y). A(X) ist abzählbar, da $A(X)=\bigcup_{n=1}^{\infty}\{x\in\mathbb{R}|P(X=x)\geq\frac{1}{n}\}$ und $|\{x\in\mathbb{R}|P(X=x)\geq\frac{1}{n}\}|\leq n\implies D$ abzählbar

$$\mathcal{D} := \{(a,b) | -\infty < a \le b < \infty, a, b \notin D\}$$

ist ein durchschnittstabiles Erzeugendensystem von $\mathfrak{B}(\mathbb{R})$. $\stackrel{\text{Sa5.2}}{\Longrightarrow}$ P^X und P^Y stimmen auf \mathcal{D} überein $\stackrel{\text{Eindeutigkeitssatz}}{\Longrightarrow}$ Behauptung.

Satz 5.3

Sei X eine Zufallsvariable mit charakteristischer Funktion ϕ . Gilt $\int |\phi(t)| dt < \infty$, so hat X eine stetige Dichte f, die gegeben ist durch

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \phi(x) dt \quad \forall x \in \mathbb{R}$$

Beweis Wie in Beweis von Satz 5.2 gilt:

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \right| \le |b - a| \quad (*)$$

Da ϕ λ -integrierbar ist, ist $|b-a||\phi|$ eine integrierbare Majorante für diesen Ausdruck in Satz 5.2. Es folgt:

$$\frac{1}{2}P(X=a) + P(a < X < b) + \frac{1}{2}P(X=b) = \frac{1}{2\pi} \int \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt$$

$$\implies P(a < X < b) \leq \frac{1}{2\pi} |b - a| \underbrace{\int |\phi(t)| dt}_{<\infty}$$

$$\implies P(X=x) = \lim_{n \to \infty} P(x - \frac{1}{n} < X < x + \frac{1}{n})$$

$$= 0$$

Ist F die Verteilungsfunktion von X, so gilt:

$$F(b) - F(a) = \frac{1}{2\pi} \int \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt \quad \forall a < b$$

Wegen (*) kann man den Satz von der majorisierten Konvergenz anwenden und bekommt:

$$\lim_{h \downarrow 0} \frac{F(x+h) - F(x)}{h} = \frac{1}{2\pi} \int e^{-itx} \lim_{h \downarrow 0} \frac{1 - e^{-ith}}{ith} \phi(t) dt$$
$$= \frac{1}{2\pi} \int e^{-itx} \phi(t) dt$$
$$=: f(x)$$

Außerdem folgt $x \mapsto f(x)$ ist stetig.

5.3 Verteilungskonvergenz

Definition

- a) Gegeben sei der messbare Raum (\mathbb{R},\mathfrak{B}) mit Wahrscheinlichkeitsmaßen P, P_1, P_2, \ldots und zugehörigen Verteilungsfunktionen F, F_1, F_2, \ldots P_n konvergiert schwach gegen P ($P_n \stackrel{w}{\to} P$), wenn $\lim_{n \to \infty} F_n(x) = F(x) \ \forall x \in \mathbb{R}$ an denen F stetig ist.
- b) Seien $X, X_1, X_2, ...$ Zufallsvariablen auf (unter Umständen verschiedenen) Wahrscheinlichkeitsräumen $(\Omega, \mathcal{A}, P), (\Omega_1, \mathcal{A}_1, P_1), ...$ X_n konvergiert in Verteilung gegen X $(X_n \xrightarrow{d} X)$, wenn $P^{X_n} \xrightarrow{w} P^X$.

Beispiel 5.2 Konvergenz in Verteilung bzw. schwache Konvergenz ist schwächer als f.s.-Kovergenz.

Sei z.B.
$$X \sim N(0,1)$$
 und $X_{2n} = X, X_{2n+1} = -X \ \forall n \in \mathbb{N}. \implies P^{X_n} \equiv P^X = N(0,1)$ und (X_n) konvergiert in Verteilung (gegen X) jedoch $X_n \not\xrightarrow{f_{\mathcal{I}}^s} X$

Jedoch gilt folgender nützlicher Satz:

Satz 5.4 (Darstellungssatz von Skorohod)

Es seien $X, X_1, X_2, ...$ Zufallsvariablen mit $X_n \stackrel{d}{\to} X$. Dann existiert ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und hierauf Zufallsvariablen $X', X'_1, X'_2, ...$ mit $X' \stackrel{d}{=} X, X'_n \stackrel{d}{=} X_n \ \forall n \in \mathbb{N}$ derart, dass $X'_n \stackrel{f.s.}{\to} X'$.

Beweis Es seien F, F_1, F_2, \ldots die Verteilungsfunktionen zu X, X_1, X_2, \ldots und $(\Omega, \mathcal{A}, P) = ((0,1), \mathfrak{B}_{(0,1)}, \lambda_{(0,1)})$. Weiter sei $F^{-1}: (0,1) \to \mathbb{R}, F^{-1}(y) := \inf\{x \in \mathbb{R} | F(x) \ge y\}$ die Quantilsfunktion zu F, analog (Quantilsfunktion) $F_n^{-1}, n \in \mathbb{N}$. Setze $X' := F^{-1}, X'_n := F_n^{-1}$.

Satz 5.7 (Stoch 1)
$$\Longrightarrow X' \stackrel{d}{=} X, X'_n \stackrel{d}{=} X_n, n \in \mathbb{N} \ (P(X' \le x) = P(F^{-1}(\omega) \le x) = \underbrace{P(\omega \le F(x))}_{=\lambda(0,1)} = F(x) \)$$

Es bleibt also zu zeigen , dass für P-fast alle $\omega \in \Omega : \lim_{n \to \infty} X'_n(\omega) = X'(\omega)$. Sei $\omega \in (0,1)$. Da X nur abzählbar viele Atome hat (vgl. Beweis von Korollar 5.1) existiert zu $\varepsilon > 0$ ein $x \in \mathbb{R}$ mit $X'(\omega) - \varepsilon < x < X'(\omega)$ und P(X = x) = 0. Es gilt (Lemma 5.6, Stoch 1): $\forall y \in (0,1), x \in \mathbb{R}$:

$$y \leq F(x) \iff F^{-1}(y) \leq x$$

Hier: $\omega \leq F(x) \iff F^{-1}(\omega) = X'(\omega) \leq x$. Wegen $X'(\omega) > x$ folgt $F(x) < \omega$. Da $F_n(x) \to F(x)$ für $n \to \infty$ nach Voraussetzung, $\exists n_0 \in \mathbb{N}$, so dass $\forall n \geq n_0 : F_n(x) < \omega$. Also $X'_n > x$. Mit $\varepsilon \downarrow 0$ folgt:

$$\liminf_{n \to \infty} X'_n(\omega) \ge X'(\omega) \quad \forall \omega \in \Omega.$$

Ist $\omega' > \omega$ und $\varepsilon > 0$, so \exists ein x mit $X'(\omega') < x < X'(\omega') + \varepsilon$ und P(X = x) = 0. Da F rechtsseitig stetig, folgt $F(F^{-1}(y)) \ge y \ \forall y \in (0,1)$, also mit der Monotonie von $F : \omega < \omega' \le F(X'(\omega')) \le F(x)$.

Wegen $F_n(x) \to F(x)$ $(n \to \infty)$, $\exists n_0 \in \mathbb{N}$ sodass $\omega \leq F_n(x)$ (d.h. $X'_n(\omega) \leq x$) $\forall n \geq n_0$ gilt mit $\varepsilon \downarrow 0$ ergibt das

$$\limsup_{n \to \infty} X'_n(\omega) \le X'(\omega') \quad \forall \omega' > \omega.$$

Satz 5.5 Es sei $C_b(\mathbb{R})$ die Menge aller stetigen und beschränkten Funktionen, $h: \mathbb{R} \to \mathbb{R}$. Dann gilt:

$$X_n \stackrel{d}{\to} X \iff Eh(X_n) \to Eh(X) \quad \forall h \in C_b(\mathbb{R})$$

Beweis

"⇒": Nach Satz 5.4 existieren ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und Zufallsvariablen $X' \stackrel{d}{=} X$, $X'_n \stackrel{d}{=} X_n \quad \forall n \in \mathbb{N} \text{ mit } X'_n \stackrel{f.s.}{\to} X'$. Es folgt:

$$\lim_{n\to\infty} \left(Eh\left(X_{n}\right)\right) = \lim_{n\to\infty} \left(Eh\left(X_{n}'\right)\right) \overset{\text{h stetig},X_{n}'\overset{f.s.}{\to}X'}{=} Eh\left(X'\right) = Eh\left(X\right).$$

"\(\infty\)": Für $a, b \in \mathbb{R}, a < b$ sei $h_{a,b} : \mathbb{R} \to \mathbb{R}$ definiert durch

$$h_{a,b}(x) := \begin{cases} 1 & , x \le a \\ \frac{b-x}{b-a} & , a < x < b \\ 0 & , x \ge b \end{cases}$$

 $h_{a,b}$ ist stetig und beschränkt. Seien F, F_n die Verteilungsfunktionen zu $X, X_n \quad \forall n \in \mathbb{N}$. Dann gilt $\forall y > x$:

$$F_{n}(x) = E\left[\mathbf{1}_{(-\infty,x)}(X_{n})\right] \leq E\left[h_{x,y}(X_{n})\right] \overset{n \to \infty}{\to} E\left[h_{x,y}(X)\right],$$
$$E\left[h_{x,y}(X)\right] \leq E\left[\mathbf{1}_{(-\infty,y)}(X)\right] = F(y).$$

Also folgt da F rechtsseitig stetig ist mit $y \downarrow x$:

$$\lim \sup_{n \to \infty} (F_n(x)) \le F(x) \quad \forall x \in \mathbb{R}$$

Analog erhält man für y < x:

$$F_{n}\left(x\right) \geq E\left[h_{y,x}\left(X_{n}\right)\right] \stackrel{n \to \infty}{\to} E\left[h_{y,x}\left(X\right)\right] \geq F\left(y\right)$$

Mit $y \uparrow x$: $\liminf_{n \to \infty} (F_n(x)) \ge F(x-) \quad \forall x \in \mathbb{R}$. Ist F in x stetig, so gilt F(x-) = F(x) und somit $F_n(X) \stackrel{n \to \infty}{\to} F(x)$.

Satz 5.6 ("Continuous Mapping Theorem")

Es seien X, X_1, X_2, \ldots Zufallsvariablen mit $X_n \stackrel{d}{\to} X$. Weiter sei $f : \mathbb{R} \to \mathbb{R}$ eine Borel-messbare Funktion mit $P(X \in \{x \in \mathbb{R} \mid f \text{ nicht stetig in } x\}) = 0$. Dann gilt auch $f(X_n) \stackrel{d}{\to} f(X)$ für $n \to \infty$.

Beweis Übung.

Satz 5.7 (Satz von Helly¹)

Zu jeder Folge $(F_n)_{n\in\mathbb{N}}$ von Verteilungsfunktionen existieren eine Teilfolge $(F_{n_k})_{k\in\mathbb{N}}$ und eine schwach monoton wachsende, rechtsseitig stetige Funktion $G: \mathbb{R} \to [0,1]$, sodass $\lim_{k\to\infty} (F_{n_k}(x)) = G(x) \quad \forall x\in\mathbb{R}$, an denen G stetig ist.

Beweis (Skizze)

Für $x \in \mathbb{R}$ ist $(F_n(x))_{n \in \mathbb{N}} \subset [0,1]$ $\xrightarrow{\text{Bolzano-Weierstraß}} \exists$ Häufungspunkt. Sei $(r_k)_{k \in \mathbb{N}}$ eine Abzählung von \mathbb{Q} . Wähle Teilfolgen $(F_{n_{k,j}})_{j \in \mathbb{N}}$ mit $F_{n_{k,j}} \xrightarrow{j \to \infty} G_0(r_k)$, wobei $(n_{k+1,j})_{j \in \mathbb{N}}$ eine Teilfolge von $(n_{k,j})_{j \in \mathbb{N}}$ ist. (Definition der Funktion f_0 auf \mathbb{Q}) Für die Diagonalfolge $(n_{j,j})_{j \in \mathbb{N}}$ gil dann: $F_{n_{j,j}} \to G_0$ auf \mathbb{Q} . Sei G_0 auf ganz \mathbb{R} durch $G(x) := \inf\{G_0(r) \mid r \in \mathbb{Q}, r > x\}$ fortgesetzt. Rest: $\epsilon - \delta$ -Argumente.

Bemerkung G aus Satz 5.7 muß keine Verteilungsfunktion sein.

Beispiel: $F_n := \mathbf{1}_{[n,\infty]} \implies G \equiv 0$

Definition Eine Familie \mathcal{P} von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}, \mathfrak{B})$ heißt **straff**, wenn $\forall \epsilon > 0 \exists$ kompaktes Intervall $[a, b] \subset \mathbb{R}$ mit:

$$P([a,b]) \ge 1 - \epsilon \quad \forall P \in \mathcal{P}$$

Bemerkung

- (i) Ist \mathcal{P} straff, so auch jedes $\mathcal{P}' \subset \mathcal{P}$.
- (ii) Sind alle \mathcal{P}_i mit $i \in \{1, \ldots, n\}$ straff, so auch $\bigcup_{i=1}^n \mathcal{P}_i$.
- (iii) Ist $|\mathcal{P}| = 1$, so ist \mathcal{P} straff.

Satz 5.8 Ist $\{P_n \mid n \in \mathbb{N}\}$ eine straffe Familie von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}, \mathfrak{B})$, so existieren eine Teilfolge $(P_{n_k})_{k \in \mathbb{N}}$ von $(P_n)_{n \in \mathbb{N}}$ und ein Wahrscheinlichkeitsmaß P derart, dass $P_{n_k} \stackrel{w}{\to} P$ für $k \to \infty$.

Beweis Sei F_n die Verteilungsfunktion zu $P_n \ \forall n \in \mathbb{N}$.

 $\xrightarrow{\text{Satz 5.7}} \exists \text{ Folge } (n_k)_{k \in \mathbb{N}} \text{ mit } F_{n_k}(x) \to G(x) \text{ für } k \to \infty \ \forall x \in \mathbb{R} \text{ mit } G \text{ stetig in } x;$ G ist wachsend und rechtsseitig stetig.

Bleibt zu zeigen: G ist Verteilungsfunktion, also $\lim_{x\to-\infty}(G(x))=0$ und $\lim_{x\to\infty}(G(x))=1$. Ist dann P das Wahrscheinlichkeitsmaß zu G, so folgt $P_{n_k}\stackrel{w}{\to} P$.

Sei also $\epsilon > 0$. Da $\{P_n \mid n \in \mathbb{N}\}$ straff ist $\implies \exists a, b \in \mathbb{R}$ mit $P_n([a, b]) \ge 1 - \epsilon \ \forall n \in \mathbb{N}$. $\implies F_n(a) \le \epsilon \ \forall n \in \mathbb{N}$.

G hat höchstens abzählbar viele Unstetigkeitsstellen. $\Longrightarrow \exists c < a$, in dem G stetig. $\Longrightarrow G(c) = \lim_{k \to \infty} (F_{n_k}(c)) \le \epsilon \implies G(x) \le \epsilon \ \forall x \le c$.

Also: $\forall \epsilon > 0 \quad \exists c \in \mathbb{R} : \quad \forall x \le c \text{ gilt } 0 \le G(x) \le \epsilon \implies \lim_{x \to -\infty} (G(x)) = 0 \text{ und } \lim_{x \to \infty} (G(x)) = 1.$

Satz 5.9 (Stetigkeitssatz für charakteristische Funktionen)

Es seien X, X_1, X_2, \ldots Zufallsvariablen, $\phi, \phi_1, \phi_2, \ldots$ die zugehörigen charakteristischen Funktionen. Dann gilt:

$$X_n \stackrel{d}{\to} X \quad \iff \quad \phi_n(t) \to \phi(t) \quad \forall t \in \mathbb{R}$$

Beweis

"\Rightarrow": Sei $t \in \mathbb{R}$. $x \mapsto \cos(tx)$, $x \mapsto \sin(tx)$ sind stetig und beschränkt.

 $\xrightarrow{\text{Satz 5.5}} \phi_n(t) = E\cos(tX_n) + iE\sin(tX_n) \to E\cos(tX) + iE\sin(tX) = \phi(t).$

"\(\infty\)": Wir zeigen zunächst: $\{P^{X_n}, n \in \mathbb{N}\}$ ist straff. \mathbb{C} -wertige Version von Fubini II liefert $\forall \delta > 0$.

$$\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \varphi_n(t)) dt = \int \left(\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - e^{itx}) dt \right) P^{X_n}(dx)$$

$$= 2 \int \underbrace{\left(1 - \frac{\sin(\delta x)}{\delta x} \right)}_{\geq 0} P^{X_n}(dx)$$

$$\geq 2 \int_{|x| \geq \frac{2}{\delta}} \underbrace{\left(1 - \frac{1}{|\delta x|} \right)}_{\geq \frac{1}{2}} P^{X_n}(dx)$$

$$\geq P^{X_n}([-\frac{2}{\delta}, \frac{2}{\delta}]^C)$$

Sei $\varepsilon > 0$. Da φ in 0 stetig und $\varphi(0) = 1$, $\exists \delta > 0$:

$$|1 - \varphi(t)| \le \frac{\varepsilon}{4} \quad \forall |t| \le \delta$$

 $\Rightarrow |\frac{1}{\delta} \int_{-\delta}^{\delta} (1-\varphi(t)) dt| \leq \frac{1}{\delta} 2\delta \frac{\varepsilon}{4} = \frac{\varepsilon}{2}$. Da $|\varphi_n| \leq 1$ folgt mit majorisierter Konvergenz:

$$\int_{-\delta}^{\delta} (1 - \varphi_n(t)) dt \stackrel{n \to \infty}{\to} \int_{-\delta}^{\delta} (1 - \varphi(t)) dt$$

 $\Rightarrow \exists n_0 \in \mathbb{N}$, so dass $\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \varphi_n(t)) dt \leq \varepsilon \ \forall n \geq n_0. \Rightarrow P^{X_n}([-\frac{2}{\delta}, \frac{2}{\delta}]) \geq 1 - \varepsilon \ \forall n \geq n_0.$

Außerdem: $\forall n \in \{1, \dots, n_0 - 1\} \exists a_n > 0 \text{ mit } P^{X_n}([-a_n, a_n]) \ge 1 - \varepsilon \operatorname{da} P^{X_n}([-m, m]) \to 1 \text{ für } m \to \infty.$

Insgesammt: Sei $a := \max\{a_1, \dots, a_{n_0-1}, \frac{2}{\delta}\} \Rightarrow P^{X_n}([-a, a]) \geq 1 - \varepsilon \ \forall n \in \mathbb{N} \Rightarrow \{P^{X_n}, n \in N\} \text{ ist straff.}$

Annahme: $X_n \stackrel{d}{\to} X$ gilt nicht.

 $\Rightarrow \exists x \in \mathbb{R} \text{ mit } P(X = x) = 0 \text{ und } P(X_n \le x) \not\rightarrow P(X \le x), n \to \infty.$

d.h. $\exists \varepsilon > 0$ und eine Teilfolge $(X_{n_k})_{k \in \mathbb{N}}$ mit $|P(X_{n_k} \le x) - P(X \le x)| \ge \varepsilon \ \forall k \in \mathbb{N}$ (*).

 $\{P^{X_{n_k}}, k \in \mathbb{N}\}$ ist ebenfalls straff $\stackrel{S.5.8}{\Rightarrow} \exists$ Teilfolge $(X_{n_{k_j}})_{j \in \mathbb{N}}$ und ein W'maß P_0 mit $P^{X_{n_{k_j}}} \stackrel{w}{\to} P_0$.

Sei φ_0 charakteristische Funktion zu P_0 . Also folgt mit der Hinrichtung: $\varphi_{n_{k_j}}(t) \to \varphi_0(t) = \varphi(t) \stackrel{Kor,5.1}{\Rightarrow} P_0 = P^X$, also $X_{n_{k_j}} \stackrel{d}{\to} X$ und damit $P(X_{n_{k_j}} \leq x) \to P(X \leq x)$. Wid zu (*).

Wir benötigen noch folgendes technisches Hilfslemma:

Lemma 5.2

Für alle $z_1, \ldots, z_n, w_1, \ldots, w_n \in \{z \in \mathbb{C} | |z| \le 1\}$ gilt:

$$\left| \prod_{k=1}^{n} z_k - \prod_{k=1}^{n} w_k \right| \le \sum_{k=1}^{n} |z_k - w_k|$$

Beweis

$$|\prod_{k=1}^{n} z_{k} - \prod_{k=1}^{n} w_{k}| \leq |\prod_{k=1}^{n} z_{k} - w_{1} \prod_{k=2}^{n} z_{k}| + |w_{1} \prod_{k=2}^{n} z_{k} - w_{1} w_{2} \prod_{k=3}^{n} z_{k}| + \dots + |w_{1} \dots w_{n-1} z_{n} - \prod_{k=1}^{n} w_{k}|$$

$$= |z_{1} - w_{1}| |\prod_{k=2}^{n} z_{k}| + |z_{2} - w_{2}| |w_{1} \prod_{k=3}^{n} z_{k}| + \dots + |z_{n} - w_{n}| |\prod_{k=1}^{n-1} w_{k}|$$

Hauptsatz des Abschnitts:

Satz 5.10 (Zentraler Grenzwertsatz von Lindeberg-Lévy)

Für jedes $n \in \mathbb{N}$ seien $X_{nk}, k = 1, \ldots, r_n$ unabhängige Zufallsvariablen (nicht notwendig identisch verteilt) auf einem Wahrscheinlichkeitsraum $(\Omega_n, \mathcal{A}_n, P_n)$ mit $\operatorname{Var}(X_{nk}) = \sigma_{nk}^2 < \infty$ und $EX_{nk} = \mu_{nk} < \infty$. Es sei $s_n^2 := \sum_{k=1}^{r_n} \sigma_{nk}^2 > 0$. Ist dann für alle $\varepsilon > 0$ die **Lindeberg-Bedingung**

(L)
$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk} - \mu_{nk}| > \varepsilon s_n} (X_{nk} - \mu_{nk})^2 dP_n = 0$$

erfüllt, so gilt mit $n \to \infty$:

$$\frac{1}{s_n} \sum_{k=1}^{r_n} (X_{nk} - \mu_{nk}) \stackrel{d}{\to} Z \ , \ Z \sim N(0, 1)$$

Bemerkung 5.1 1. Die Lindeberg-Bedingung schließt einen dominierenden Einfluss eines einzelnen Summanden X_{nk} auf die $X_{n1}+\cdots+X_{nr_n}$ aus. Insbesondere gilt:

$$\max\{\sigma_{nk}^2|1\leq k\leq r_n\}=o(s_n^2)$$
 für $n\to\infty$

2. Der ZGWS hat eine lange "Verbesserungsgeschichte"hinter sich. Gelegentlich ist die Lyapunov-Bedingung einfacher zu verwenden:

$$\lim_{n\to\infty}\frac{1}{s_n^{2+\delta}}\sum_{k=1}^{r_n}E(|X_{nk}-\mu_{nk}|^{2+\delta})=0 \text{ für ein }\delta>0$$

3. Der Satz liefert eine Begründung für die "Allgegenwart" der Normalverteilung.

Ein wichtiger Spezialfall ist

Satz 5.11 (ZGWS St. I)

Es seien Y_1, Y_2, \ldots u.i.v. ZV mit $EY_1 = \mu < \infty$ und $0 < Var(Y_1) = \sigma^2 < \infty$. Dann

$$\frac{Y_1 + \cdots Y_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{d} Z \sim N(0, 1)$$

Beweis Sei $X_{nk}:=Y_k, r_n=n, (\Omega_n, \mathcal{A}_n, P_n)=(\Omega, \mathcal{A}, P)$. Es gilt: $s_n^2=n\sigma^2$ und

$$\frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk} - \mu_{nk}| > \varepsilon s_n} (X_{nk} - \mu_{nk})^2 dP_n = \frac{1}{\sigma^2} \int_{|Y_1 - \mu_1| > \varepsilon \sqrt{n}\sigma} (Y_1 - \mu_1)^2 dP =: I_n$$

Da $z_n := \mathbf{1}_{(\varepsilon\sqrt{n}\sigma,\infty)}(|Y_1-\mu_1|)(Y_1-\mu_1)^2 \le (Y_1-\mu_1)^2$ und $\lim_{n\to\infty} z_n = 0$ folgt mit majorisierter Konvergenz, dass $\lim_{n\to\infty}I_n=0$. Also ist die Lindeberg-Bedingung erfüllt und die Behauptung folgt mit Satz 5.10.

Beweis Beweis von Satz 5.10

O.B.d.A: $\mu_{nk} = 0$ und $s_n = 1$. Anderfalls ersetze X_{nk} durch $\frac{X_{nk} - \mu_{nk}}{s_n}$. **Idee:** Verwende S.5.9: Sei φ_{nk} die charakteristische Funktion von X_{nk} und φ_{s_n} die von $\sum_{n=1}^{r_n} X_{nk} : \varphi_{s_n}(t) = \prod_{k=1}^{r_n} \varphi_{nk}(t) \to \varphi_z(t) = e^{-\frac{t^2}{2}}$ Zu zeigen:

$$\prod_{k=1}^{r_n} \phi_{n_k}(t) \to \phi_z(t) = e^{-\frac{t^2}{2}} \quad \forall t \in \mathbb{R}$$

Mit Lemma 5.1 (m = 3):

$$\left| e^{itx} - (1 + itx - \frac{1}{2}t^2x^2) \right| \le \min\{\frac{|tx|^3}{3!}, |tx|^2\} \quad \forall x \in \mathbb{R}$$

$$\le \min\{|tx|^3, |tx|^2\}$$

Integral über x liefert (beachte: EX = 0)

$$\left| \phi_{n_k}(t) - \left(1 - \frac{1}{2}t^2 \sigma_{n_k}^2\right) \right| \le E \min\{|tX_{n_k}|^2, |tX_{n_k}|^3\} =: M_{n_k}$$

Sei $\varepsilon > 0$ beliebig. Es gilt

$$M_{n_k} \leq \int_{|X_{n_k}| \leq \varepsilon} |tX_{n_k}|^3 dP_n + \int_{|X_{n_k}| > \varepsilon} |tX_{n_k}|^2 dP_n$$

$$\leq |t|^3 \varepsilon \sigma_{n_k}^2 + t^2 \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 dP_n$$

$$\implies \sum_{k=1}^{r_n} M_{n_k} \leq |t|^3 \varepsilon + t^2 \sum_{k=1}^{r_n} \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 \mathrm{d}P_n \overset{n \to \infty}{\to} \varepsilon |t|^3 + 0 \quad \text{folgt mit } (L)$$

Mit $\varepsilon \downarrow 0$ folgt:

$$\lim_{n \to \infty} \sum_{k=1}^{r_n} \left| \phi_{n_k}(t) - \left(1 - \frac{1}{2} t^2 \sigma_{n_k}^2\right) \right| = 0 \quad \forall t \in \mathbb{R} \quad (1)$$

Behauptung: $\lim_{n\to\infty} \left| \prod_{k_n}^{r_n} \phi_{n_k}(t) - \prod_{k=1}^{r_n} (1 - \frac{1}{2}t^2 \sigma_{n_k}^2) \right| = 0 \quad \forall t \in \mathbb{R}$ (2) Beweis: $\forall \varepsilon > 0$ gilt:

$$\sigma_{n_k}^2 \le \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 \mathrm{d}P_n + \varepsilon^2$$

$$\implies \limsup_{n \to \infty} \max \{ \sigma_{n_k}^2 | 1 \le k \le r_n \}$$

$$\leq \lim_{n \to \infty} \left(\varepsilon^2 + \sum_{k=1}^{r_n} \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 dP_n \right)$$

$$\stackrel{(L)}{=}$$
 $\varepsilon^2 + 0$

Mit $\varepsilon \downarrow 0$:

$$\lim_{n \to \infty} \max \{ \sigma_{n_k}^2 | 1 \le k \le r_n \} = 0 \quad (3)$$

$$\implies \forall t \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \text{ so dass } \forall n \geq n_0 : |1 - \frac{1}{2}t^2\sigma_{n_k}^2| \leq 1 \quad \forall k \in \{1, \dots, r_n\}$$

 \implies Für $n \ge n_0$ läßt sich das \prod in (2) nach Lemma 5.2 durch die Summe in (1) abschätzen, d.h. (1) \implies (2)

Es bleibt zu zeigen:

Also $(3) \implies (4)$

$$\lim_{n \to \infty} |\underbrace{\prod_{k=1}^{r_n} \exp(-\frac{1}{2}t^2 \sigma_{n_k}^2)}_{=e^{-\frac{1}{2}t^2}} - \prod_{k=1}^{r_n} (1 - \frac{1}{2}t^2 \sigma_{n_k}^2)| = 0 \quad \forall t \in \mathbb{R}$$

Behauptung fogt mit Lemma 5.2 falls

$$\lim_{n \to \infty} \sum_{k=1}^{r_n} \left| \exp(-\frac{1}{2}t^2 \sigma_{n_k}^2) - 1 + \frac{1}{2}t^2 \sigma_{n_k}^2 \right| = 0 \quad (4)$$

Für $x \in \mathbb{R}$ mit $|x| \le \frac{1}{2}$ gilt $|e^x - 1 - x| \le \frac{1}{2} \sum_{j=2}^{\infty} |x|^j \le x^2$

$$\implies \sum_{k=1}^{r_n} |\exp(\underbrace{-\frac{1}{2}t^2\sigma_{n_k}^2}) - 1 + \frac{1}{2}t^2\sigma_{n_k}^2| \le \frac{1}{4}t^4\sum_{k=1}^{r_n}\sigma_{n_k}^4$$

Wegen
$$\sum_{k=1}^{r_n} \sigma_{n_k}^4 \le \max\{\sigma_{n_k}^2 | 1 \le k \le r_n\} \cdot \underbrace{\sum_{k=1}^{r_n} \sigma_{n_k}^2}_{-1} \overset{n \to \infty, (3)}{\to} 0$$

Beispiel 5.3 (Rekorde)

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und X_1, X_2, \dots eine Folge von unabhängigen identisch verteilten Zufallsvariablen darauf mit absolutstetiger Verteilungsfunktion F. Setze:

$$R_n := \begin{cases} 1, & \text{falls } X_n > X_i, i = 1, \dots, n-1 \\ 0, & \text{sonst} \end{cases}$$

 $R_n = 1 \iff n$ -ter Versuch ist ein Rekord. F stetig $\implies P(X_i = X_j) = 0 \ \forall i \neq j$

$$\Rightarrow A := \{\omega \in \Omega | \exists i \neq j, X_i(\omega) = X_j(\omega) \}$$

$$= \bigcup_{i,j \in \mathbb{N}, i \neq j} \{X_i = X_j \}$$

$$\Rightarrow P(A) = 0$$

Sei S_n die Menge der Permutationen der Zahlen $1, \ldots, n$. Sei $\Psi_n : \Omega \to S_n$ gegeben durch

$$\Psi_n = \pi \iff X_{\pi(1)} < X_{\pi(2)} < \dots < X_{\pi(n)}$$

 Ψ_n ist messbar, da $\Psi^{-1}(\{\pi\}) = \bigcap_{i=1}^n \{\underbrace{X_{\pi(i)} < X_{\pi(i+1)}}_{\in A} \}$. Beispiel 3.5 $\Longrightarrow (X_{\pi(1)}, \dots, X_{\pi(n)}) \stackrel{d}{=}$

$$(X_1,\ldots,X_n) \ \forall \pi \in S_n.$$

Ist $B := \{(x_1, ..., x_n) \in \mathbb{R}^n | x_1 < \dots < x_n \}$ so gilt:

$$P(\Psi_n = \pi) = P((X_{\pi(1)}, \dots, X_{\pi(n)}) \in B)$$
$$= P((X_1, \dots, X_n) \in B)$$
$$= P(\Psi_n = \mathbf{id}) \text{ unanhängig von } \pi$$

$$\Rightarrow P(\Psi_n = \pi) = \frac{1}{n!} \ \forall \pi \in S_n \text{ und}$$

$$P(R_n = 1) = P(\Psi_n \in \{\pi \in S_n | \pi(n) = n\}) = \frac{1}{n}$$

$$\Rightarrow R_n \sim B(1, \frac{1}{n}) \text{ sind also nicht identisch verteilt}$$

Wegen $\{R_{n+1} = 1\} \cap \{\Psi_n = \pi\} = \{\Psi_{n+1} = \tilde{\pi}\}$ mit

$$\tilde{\pi}(i) = \begin{cases} \pi(i) &, i \le n \\ n+1 &, i = n+1 \end{cases}$$

folgt:

$$P(\Psi_n = \pi, R_{n+1} = 1) = \frac{1}{(n+1)!} = \underbrace{P(\Psi_n = \pi)}_{=\frac{1}{n!}} \underbrace{P(R_{n+1} = 1)}_{\frac{1}{n+1}} \quad \forall \pi \in S_n$$

$$\implies \Psi_n$$
 und R_{n+1} sind unabhängig

$$\implies$$
 Da $(R_1, \ldots, R_n) = G(\Psi_n)$ sind R_{n+1} und (R_1, \ldots, R_n) unabhängig

$$P(R_{i_1} = j_1, \dots, R_{i_n} = j_n) = P(R_{i_1} = j_1, \dots, R_{i_{n-1}} = j_{n-1}) \cdot P(R_{i_n} = j_n) = \dots P(R_{i_1} = j_1) \cdot \dots \cdot P(R_{i_n} = j_n) \text{ für } i_1 < i_2 < \dots < i_n, j_1, \dots, j_n \in \{0, 1\}.$$

die Zufallsvariablen $(R_n)_{n\in\mathbb{N}}$ sind unabhängig

Wie viele Rekorde gibt es unter den ersten n Versuchen?

$$S_n := \sum_{i=1}^n R_i$$

Es gilt:

$$ES_n = \sum_{k=1}^n ER_k = \sum_{k=1}^n \frac{1}{k}$$
$$Var(S_n) = \sum_{k=1}^n Var(R_k) = \sum_{k=1}^n \frac{1}{k} (1 - \frac{1}{k}) = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k^2}$$

Insbesondere:

$$\frac{ES_n}{\log n} \stackrel{n \to \infty}{\to} 1, \quad \frac{\operatorname{Var}(S_n)}{\log n} \stackrel{n \to \infty}{\to} 1$$

Mit dem zentralen Genzwertsatz (ZGWS) bekommen wir genauere Aussagen: Sei $X_{n_k} = R_k, r_n = n \implies s_n = (\operatorname{Var}(S_n))^{\frac{1}{2}}$ Überprüfen der Lyapunov-Bedingung ($\delta = 1$):

$$E|R_k - \underbrace{ER_k}_{=\frac{1}{k}}|^3 = \underbrace{P(R_k = 1)}_{=\frac{1}{k}} (1 - \frac{1}{k})^3 + \underbrace{P(R_k = 0)}_{=\frac{k-1}{k}} \left(\frac{1}{k}\right)^3 \le \frac{2}{k}$$

$$\implies 0 \le \frac{1}{s_n^3} \sum_{k=1}^n E|R_k - ER_k|^3 \le \frac{1}{s_n^3} \sum_{k=1}^n \frac{2}{k} \to 0 \text{ für } n \to \infty$$

Der Zentrale Grenzwertsatz (Satz 5.10) liefert

$$\frac{S_n - ES_n}{\sqrt{Var(S_n)}} \stackrel{d}{\to} Z \sim N(0, 1)$$

bzw.

$$\frac{S_n - \log(n)}{\sqrt{\log(n)}} \xrightarrow{d} Z \sim N(0, 1)$$

Also für große n: $P(\log(n) - 1, 96\sqrt{\log(n)} \le S_n \le \log(n) + 1, 96\sqrt{\log(n)}) \approx P(-1, 96 \le 1)$ $Z \le 1,96 = 0,9.$

Beispiel 5.4 (G. Polya, 1930: Eine Wahrscheinlichkeitsaufgabe zur Kundenwerbung, oder: "Coupon Collector's Problem")

Urne mit n verschiedenen Kugeln, Ziehen mit Zurücklegen

 $S_n = \text{Anzahl der Züge}$, bis $r_n = [\phi \cdot n]$, $0 < \phi < 1$ verschiedene Kugeln gezogen werden. Es sei X_{nk} = Anzahl der bis zum Erhalt einer neuen Kugel nötigen Züge, wenn bereits k-1 verschiedene Kugeln gezogen (und zurückgelegt) wurden. $X_{n1}:=1$. $X_{nk} \sim Geo(\frac{n-k+1}{n})$, d.h. $P(X_{nk}=j)=(\frac{k-1}{n})^{j-1}\cdot\frac{n-k+1}{n},\ j=1,2,\ldots$ Falls $Y\sim Geo(p),\ p\in(0,1]$ mit $Y\equiv 1$ bei p=1, gilt: $EY=\frac{1}{p},\ \mathrm{Var}(Y)=\frac{1-p}{p^2},\ EY^4\leq\frac{24}{p^4}$

$$X_{nk} \sim Geo(\frac{n-k+1}{n}), \text{ d.h. } P(X_{nk} = j) = (\frac{k-1}{n})^{j-1} \cdot \frac{n-k+1}{n}, \ j = 1, 2, \dots$$

$$EY = \frac{1}{p}, \ Var(Y) = \frac{1-p}{p^2}, \ EY^4 \le \frac{24}{p^4}$$

Für $S_n^p = X_{n1} + \cdots + X_{nr_n}$ erhalten wir $\mu_n := ES_n = \sum_{k=1}^{r_n} \frac{n}{n-k+1}$ und $s_n^2 =$

$$Var(S_n) = \sum_{k=1}^{r_n} \frac{\frac{k-1}{n}}{(\frac{n-k+1}{n})^2} = n \sum_{k=1}^{r_n} \frac{k-1}{(n-k+1)^2}.$$

Wir prüfen die Lyapunov-Bedingung mit $\delta = 2$: Für $Y \sim Geo(p)$ gilt:

$$E(Y - \frac{1}{p})^4 \le E(\max\{Y, \frac{1}{p}\})^4 \le EY^4 + \frac{1}{p^4} \le \frac{25}{p^4}$$

Insbesondere ist damit

$$\sum_{k=1}^{r_n} E|X_{nk} - \mu_{nk}|^4 \le 25 \cdot \sum_{k=1}^{r_n} \frac{1}{(1 - \frac{(k-1)}{n})^4} \le 25 \cdot [\phi \cdot n] \cdot \frac{1}{(1 - \phi)^4} = O(n).$$

Wegen $s_n^2 \ge n \cdot \frac{1}{n^2} \sum_{k=1}^{r_n} (k-1) = \frac{1}{n} \cdot \frac{1}{2} (r_n - 1) \cdot r_n \ge \frac{1}{2n} (\phi n - 1) \phi n = \Theta(n)$ folgt damit

$$\lim_{n \to \infty} \left(\frac{1}{s_n^{2+2}} \sum_{k=1}^{r_n} E|X_{nk} - \mu_{nk}|^{2+2} \right) = 0.$$

Also folgt mit dem Zentralen Grenzwertsatz:

$$\frac{S_n - ES_n}{\sqrt{\operatorname{Var}(S_n)}} \stackrel{d}{\to} Z \sim N(0, 1)$$

Weiter gilt:
$$\frac{1}{n}ES_n = \sum_{k=1}^{r_n} \frac{1}{n} \cdot \frac{1}{1 - \frac{k-1}{n}} = \int_0^{\frac{r_n}{n}} \frac{1}{1 - \frac{nx}{n}} dx + O(\frac{1}{n}) = \int_0^{\frac{r_n}{n}} \frac{1}{1 - x} dx + O(\frac{1}{n}) = \int_0^{\phi} \frac{1}{1 - x} dx + O(\frac{1}{n}) = -\log(1 - \phi) + O(\frac{1}{n}).$$

Analog:
$$\lim_{n \to \infty} (\frac{1}{n} \operatorname{Var}(S_n^2)) = \int_0^{\phi} \frac{x}{(1-x)^2} dx = \frac{\phi}{1-\phi} + \log(1-\phi).$$

Mit
$$a(\phi) = -\log(1 - \phi), \ b(\phi) := \sqrt{\frac{\phi}{1 - \phi} + \log(1 - \phi)}$$
 folgt:

$$\frac{S_n - a(\phi)n}{b(\phi)\sqrt{n}} \stackrel{d}{\to} Z \sim N(0,1)$$

Beispiel (Numerisches Beispiel)

Wie groß muss ihr Bekanntenkreis sein, damit mit einer Wahrscheinlichkeit von mindestens 0,95 an 180 Tagen im Jahr Geburtstag gefeiert werden kann?

Also:
$$n = 365$$
, $\phi = \frac{180}{365}$, $S_n \le k \iff \underbrace{\frac{S_n - a(\phi)n}{b(\phi)\sqrt{n}}}_{\approx Z} \le \frac{k - a(\phi)n}{(b(\phi)\sqrt{n})}$

$$\Phi(\underbrace{\frac{k - a(\phi)n}{b(\phi)\sqrt{n}}}) \ge 0.95 \iff k \ge a(\phi)n + 1.645 \cdot b(\phi)\sqrt{n} \implies k \ge 266.$$

Für
$$\phi = 1$$
 kann man den Zentralen Grenzwertsatz nicht mehr anwenden: $r_n = n$, $Var(S_n) = n \sum_{k=1}^n \frac{k-1}{(n-k+1)^2} = n \sum_{k=1}^n \frac{n-k}{k^2} = n^2 \sum_{k=1}^n \frac{1}{k^2} - n \sum_{k=1}^n \frac{1}{k} = n^2 \cdot \frac{\pi^2}{6} + o(n^2)$.

 $\operatorname{Var}(X_{n,n}) = \frac{1-\frac{1}{n}}{\frac{1}{2}} = n^2 + o(n^2) \implies \text{bei großem } n \text{ steckt etwa } \frac{6}{\pi^2} \approx 0,61 \text{ der Varia-}$ bilität der Summe im letzten Summanden. Wir können jetzt eine andere Skalierung finden, allerdings ist die Grenzverteilung dann keine Normalverteilung mehr! Sei $A_{m,i}$ das Ereignis, dass die Kugel i in den ersten m Ziehungen nicht auftaucht

$$\implies \{S_n > m\} = \bigcup_{i=1}^n A_{m,i}.$$

 $(S_n$ ist die Anzahl der Züge, bis alle n verschiedenen Kugeln mindestens einmal gezogen worden sind)

Mit der Siebformel:

$$P(S_n > m) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} P(\bigcap_{l=1}^{k} A_{m,i_l}) = \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n}{k} (1 - \frac{k}{n})^m$$

Sei $c \in \mathbb{R}$ fest, $m_n = [n \log(n) + cn]$. Für x > -1 gilt $\log(1 + x) \le x$. Damit: $\log\left(\binom{n}{k}\left(1 - \frac{k}{n}\right)^{m_n}\right) \le k \log(n) - \log(k!) + \log\left(1 - \frac{k}{n}\right)(n \log(n) + cn - 1) \le k \log(n) - \log(k!) - \frac{k}{n}(n \log(n) + cn - 1) \le -ck + \frac{k}{n} - \log(k!)$

$$\implies \left| (-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n} \right)^{m_n} \right| \le \frac{1}{k!} \exp(\frac{k}{n} - ck) \quad \forall c \in \mathbb{R}.$$

Insgesamt:

$$\lim_{n \to \infty} \left(P\left(\frac{S_n - n\log(n)}{n} > c\right) \right) = \lim_{n \to \infty} \left(P\left(S_n > m_n\right) \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n-1} (-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n}\right)^{m_n} \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{\infty} (-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n}\right)^{m_n} \right)$$

$$\stackrel{\text{maj. Konv.}}{=} \sum_{k=1}^{\infty} \lim_{n \to \infty} \left((-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n}\right)^{m_n} \right)$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!} \left(e^{-c} \right)^k$$

Das Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathfrak{B})$ mit der Verteilungsfunktion $F(x) = e^{-e^{-x}} \ \forall x \in \mathbb{R}$ heißt **Gumbel-Verteilung**.

Also gilt:

$$\frac{S_n - n \log(n)}{n} \stackrel{d}{\to} Z \sim Gumbel.$$

Beispiel (Variation des numerischen Beispiels von oben)

Der Bekanntenkreis soll jetzt so groß sein, dass mit einer Wahrscheinlichkeit von mindestens 0,95 täglich gefeiert werden kann.

$$\implies k \ge 365 \cdot \log(365) \cdot 365 \cdot 2,97 \approx 3237,51 \ (?)$$

6 Zentraler Grenzwertsatz in \mathbb{R}^n

Definition Es sei $X = (X_1, \dots, X_d)^T$ ein Zufallsvektor.

- a) Ist $EX_i < \infty$, i = 1, ..., d, so heißt $EX := (EX_1, ..., EX_d)$ **Erwartungswert** von X.
- b) Ist $EX_i^2 < \infty$, i = 1, ..., d, so heißt die $d \times d$ -Matrix $Cov(X) = (Cov(X_i, X_j))_{i,j=1,...,d}$ **Kovarianzmatrix** von X.

Beachte: Die Kovarianzmatrix ist symmetrisch, da $Cov(X_i, X_j) = Cov(X_j, X_i)$, und in der Diagonale steht die Varianz, denn $Cov(X_i, X_i) = Var(X_i)$, jeweils für i, j = 1, ..., d.

Bemerkung a) Es gelten folgende Rechenregeln: Sei $A \in \mathbb{R}^{s \times d}, b \in \mathbb{R}^s$ E(AX+b) = AEX+b $Cov(AX+b) = A \cdot Cov(X)A^T$

b) Die 2. Rechenregel impliziert, dass Kovarianzmatrizen stets positiv semidefinit sind.

Definition Es sei $X = (X_1, ..., X_d)^T$ ein Zufallsvektor. Dann ist

$$\phi_X : \mathbb{R}^d \to \mathbb{C}, \ \phi_X(t) = Ee^{it^T X}$$

die charakteristische Funktion zu X.

Bemerkung

a) Es gilt für Zufallsvektoren X, Y:

$$X \stackrel{d}{=} Y \quad \iff \quad \phi_X(t) = \phi_Y(t) \quad \forall t \in \mathbb{R}^d \quad \iff \quad t^T X \stackrel{d}{=} t^T Y \quad \forall t \in \mathbb{R}^d$$

b) Die Verteilungskonvergenz für Zufallsvektoren sei definiert durch

$$X_n \stackrel{d}{\to} X$$
 : \iff $Eh(X_n) \to Eh(X)$ $\forall h \in \mathbb{C}_b(\mathbb{R}^d)$. (vgl. Satz 5.5) Auch hier gelten

$$X_n \xrightarrow{d} X \iff \phi_n(t) \to \phi(t) \quad \forall t \in \mathbb{R}^d$$
. (vgl. Satz 5.9) und das "Continous Mapping Theorem". (vgl. Satz 5.6)

Satz 6.1 (Cramér-Wold-Technik)

Es seien X, X_1, X_2, \ldots d-dimensionale Zufallsvektoren. Dann gilt:

$$X_n \stackrel{d}{\to} X \quad \iff \quad c^T X_n \stackrel{d}{\to} c^T X \quad \forall c \in \mathbb{R}^d$$

Beweis

"\Rightarrow": folgt aus dem "Continous Mapping Theorem" mit $h(x) := c^T x$. "\(\infty\)": $c^T X_n \xrightarrow{d} c^T X \quad \forall c \in \mathbb{R}^d \xrightarrow{\text{S.5.9}} Ee^{itc^T X_n} \to Ee^{itc^T X} (n \to \infty) \quad \forall t \in \mathbb{R}, \ \forall c \in \mathbb{R}$ $\implies \phi_n(c) \to \phi(c) \quad \forall c \in \mathbb{R}^d \implies X_n \stackrel{d}{\to} X.$

6.1 Mehrdimensionale Normalverteilung

Definition

Der Zufallsvektor $X = (X_1, \dots, X_n)^T$ besitzt eine d-dimensionale Normalver**teilung**, falls c^TX eine eindimensionale Normalverteilung besitzt $\forall c \in \mathbb{R}^d$

Bemerkung

X habe eine d-dimensionale Normalverteilung.

Setze $c := e_i$ (Einheitsvektor) für ein $i \in \{1, ..., d\} \implies X_i$ ist normalverteilt.

$$\implies \exists EX_i = \mu_i; \ \operatorname{Var}(X_i) < \infty; \ EX_i^2 < \infty \implies \operatorname{Cov}(X_i, X_j) \overset{C.S.U.}{\leqslant} \infty$$

$$\implies \exists EX_i = \mu_i; \ \operatorname{Var}(X_i) < \infty; \ EX_i^2 < \infty \implies Cov(X_i, X_j) \overset{C.S.U.}{<} \infty.$$
Sei $\Sigma := Cov(X)$. Weiter gilt: $E(c^TX) = c^T\mu; \ \operatorname{Var}(c^TX) = c^T\Sigma c.$

$$\implies c^TX \sim N(c^T\mu, c^T\Sigma c) \xrightarrow{\operatorname{St.1, Bsp.12.3}} \phi_{c^TX}(t) = Ee^{itc^TX} = e^{ic^T\mu t - \frac{1}{2}c^T\Sigma ct^2} \quad \forall t \in \mathbb{R}$$

$$\implies \phi_X(t) = Ee^{it^T X} = \phi_{t^T X}(1) = e^{it^T \mu - \frac{1}{2}t^T \Sigma t}, \ t \in \mathbb{R}.$$

Wegen obiger Bemerkung, Teil a) folgt:

Die Normalverteilung ist durch μ und Σ festgelegt. Schreibweise: $X \sim N_d(\mu, \Sigma)$

Lemma 6.1 Sei
$$X \sim N_d(\mu, \Sigma)$$
, $A \in \mathbb{R}^{s \times d}$, $b \in \mathbb{R}^s$. Dann gilt: $Y := AX + b \sim N_s(A\mu + b, A\Sigma A^T)$

Beweis

$$\phi_Y(t) = Ee^{it^T(AX+b)}$$

$$= e^{it^Tb}Ee^{it^TAX}$$

$$= e^{it^Tb}\phi_X(A^Tt)$$

$$= e^{it^T(b+A\mu)-\frac{1}{2}t^T(A\Sigma A^T)t}$$

Satz 6.2 (Existenzsatz)

Sei $\mu \in \mathbb{R}^d$ und $\Sigma \in \mathbb{R}^{d \times d}$ eine beliebige symmetrische, positiv semidefinite Matrix. Dann existiert ein d-dimensionaler Zufallsvektor X mit $X \sim N_d(\mu, \Sigma)$.

Sei $Y = (Y_1, \ldots, Y_d)$, wobei Y_1, \ldots, Y_d unabhängig und $Y_k \sim N(0, 1), k = 1, \ldots, d$. Die Existenz dieser Konstruktion ist mit Satz 3.3 gegeben. Da $c^T Y \sim N(0, c^T c)$, ist $Y \sim N_d(0, I_d)^1$

 Σ positiv semidefinit $\implies \Sigma = AA^T$ mit einem $A \in \mathbb{R}^{d \times d} \xrightarrow{\text{L.6.1}} X := AY + \mu \sim$ $N_d(\mu, \Sigma)$.

¹das ist die d-dimensionale Standardnormalverteilung

Satz 6.3 Sei $X \sim N_d(\mu, \Sigma)$ und Σ nicht singulär. Dann besitzt X eine Dichte der Form

$$f(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\det \Sigma|^{\frac{1}{2}}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)), \ x \in \mathbb{R}^d$$

Beweis Sei $\Sigma = AA^T$ und $X = A \cdot Y + \mu$ mit $Y \sim N_d(0, I_d)$. Dichte von Y:

$$f_Y(y_1, \dots, y_d) = \prod_{j=1}^d \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_j^2} = \frac{1}{(2\pi)^{\frac{d}{2}}} exp(-\frac{1}{2}y^Ty)$$

Sei $\Psi(y) = Ay + \mu$. Ψ ist bijektiv, Σ regulär.

$$\xrightarrow{\text{Satz 3.6}} \Rightarrow f_X(x) = \frac{1}{|\det A|} \cdot f_X(A^{-1}(x-\mu))$$

Beachte: $\det \Sigma = (\det A)^2, \ \Sigma^{-1} = (A^{-1})^T (A^{-1}).$

Bemerkung Ist det $\Sigma = 0 \Rightarrow \exists a \in \mathbb{R}^d$, $a \neq 0$ mit $a^T \Sigma a = 0 \Rightarrow \operatorname{Var}(a^T X) = 0$. $N(\mu, \Sigma)$ ist dann auf $H = \{x \in \mathbb{R}^d \mid a^T x = a^T \mu\}$ konzentriert, d.h. $P^X(H) = 1$. Wegen $\lambda^d(H) = 0$ folgt mit dem Satz von Radon-Nikodym: \mathbb{Z} Dichte.

6.2 Zentraler Grenzwertsatz in \mathbb{R}^d

Satz 6.4 Es sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von unabh. u. identisch verteilen d-dim Zufallsvektoren mit Erwartungsvektor μ und Kovarianzmatrix Σ . Dann gilt für $\overline{X}_n =$ $\frac{1}{n}\sum_{i=1}^n X_i$:

$$\sqrt{n}(\overline{X_n} - \mu) \stackrel{d}{\to} Z, \ Z \sim N_d(0, \Sigma).$$

Beweis Sei $Z_n := \sqrt{n}(\overline{X_n} - \mu)$.

Nach Satz 6.1 ist z.z. $c^T Z_n \xrightarrow{d} c^T Z \ \forall c \in \mathbb{R}^d$. Wegen $\operatorname{Var}(c^T Z_n) = \frac{1}{n} \sum_{i=1}^n \operatorname{Var}(c^T X_i) = c^T \Sigma c, \ E c^T Z_n = 0$ können wir o.B.d.A. $c^T \Sigma c > 0$ annehmen (andernfalls ist $c^T Z_n \equiv 0$).

$$1 - \dim \text{ ZGWS}: \qquad \frac{c^T Z_n}{\sqrt{c^T \Sigma c}} = \frac{\sum_{j=1}^n c^T X_j - nc^T \mu}{\sqrt{nc^T \Sigma c}} \xrightarrow{d} Z_0, \ Z_0 \sim N(0, 1)$$

$$\Rightarrow c^T Z_n \xrightarrow{d} \sqrt{c^T \Sigma c} \cdot Z_0 \sim N(0, c^T \Sigma c)$$

Beispiel 6.1 (χ^2 -Anpassungstest) Es seien X_1, X_2 unabh. u. identisch verteilte, d-dim. Zufallsvektoren mit

$$P(X_1 = e_k) = p_k, \ k = 1, \dots, d, \ \sum_{k=1}^{d} p_k = 1.$$

Dann hat $S_n = \sum_{k=1}^n X_k$ eine Multinomialverteilung (vgl. Sto. I) mit Zähldichte:

$$P(S_n = (k_1, \dots, k_d)) = \frac{n!}{k_1! \cdots k_d!} p_1^{k_1} \cdots p_d^{k_d}$$

für $k_1, \ldots, k_d \in \mathbb{N}_0, \ k_1 + \cdots k_d = n.$ Weiter gilt: $EX_1 = p := (p_1, \dots, p_d)^T$, $Cov(X_1) = \Sigma$ mit

$$(\Sigma)_{ij} = \begin{cases} p_i(1-p_i), & i=j\\ -p_ip_j, & i\neq j \end{cases} \Rightarrow \Sigma = \operatorname{diag}(p) - pp^T.$$

ZGWS (Satz 6.4):

$$\frac{1}{\sqrt{n}}(S_n - np) \stackrel{d}{\to} Z, \ Z \sim N_d(0, \Sigma)$$

Anmerkung: Wir kennen p_1, \ldots, p_d nicht, nur die Realisierungen von X_1, \ldots, X_n . Betrachte die Testgröße $T_n := \sum_{i=1}^d \frac{1}{np_i} (S_{n,i} - np_i)^2$. Aufgabe: Zu (p_1, \ldots, p_d) , X, n gegeben, bestimme c_{α} mit $P(T_n > c_{\alpha}) = \alpha$. Also:

Bestimme Verteilung von T_n .

Lösung: Approximativ. Sei $h: \mathbb{R}^d \to \mathbb{R}, \ h(x_1, \dots, x_d) := \sum_{j=1}^d \frac{x_j^2}{n_j}$.

$$h \text{ stetig} \xrightarrow{\text{Cont. mapping}} \Rightarrow T_n = h(\frac{1}{\sqrt{n}}(S_n - np)) \xrightarrow{d} h(Z), \ Z \sim N_d(0, \Sigma)$$

Welche Verteilung hat h(Z)?

Sei
$$\tilde{Z} = \operatorname{diag}(\frac{1}{\sqrt{p_1}}, \dots, \frac{1}{\sqrt{p_d}}) \cdot Z$$
. $\xrightarrow{\operatorname{Lemma 6.1}} \Rightarrow \tilde{Z} \sim N_d(0, \tilde{\Sigma})$ wobei

$$\tilde{\Sigma} = \operatorname{diag}(\frac{1}{\sqrt{p_1}}, \dots, \frac{1}{\sqrt{p_d}}) \cdot (\operatorname{diag}(p) - pp^T) \cdot \operatorname{diag}(\frac{1}{\sqrt{p_1}}, \dots, \frac{1}{\sqrt{p_d}})$$

$$= I_d - \underbrace{(\sqrt{p_1}, \dots, \sqrt{p_d})^T}_{=:r} \cdot (\sqrt{p_1}, \dots, \sqrt{p_d})$$

$$= I_d - rr^T$$

Es gilt: $||r|| = 1 \implies \exists$ orthogonale Matrix $A = (r, *) \in \mathbb{R}^{d \times d}$. Sei $Y := A^T \tilde{Z} \Rightarrow Y \sim$ $N_d(0, \Sigma_Y)$, wobei $\Sigma_Y = A^T \tilde{\Sigma} A = I_d - \operatorname{diag}(1, 0, \dots, 0) = \operatorname{diag}(0, 1, \dots, 1).$ $\Rightarrow Y^T Y \stackrel{d}{=} \sum_{i=1}^{d-1} W_i^2$, $W_i \sim N(0,1)$ unabh. $\Rightarrow h(Z) = \tilde{Z}^T \tilde{Z} = Y^T Y \sim \chi_{d-1}^2$, Chi²-Verteilung mit d-1 Freiheitsgraden.

Zahlenbeispiel:

Würfel wird 189 mal geworfen.

Ergebnis
$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 30 & 37 & 26 & 29 & 29 & 38 \end{vmatrix}$$

Ist der Würfel fair?

D.h.
$$p_1 = \cdots = p_6 = \frac{1}{6}$$
.

$$T_n = 3,37, \ d-1 = 5, \ \alpha = 0,05, \ p = (\frac{1}{6}, \dots, \frac{1}{6})$$

 $P(T_n > c_\alpha) \stackrel{!}{=} 0,05 \Leftrightarrow 1 - F_{\xi_{\epsilon}^2}(c_\alpha) \stackrel{!}{=} 0,05 \Rightarrow c_\alpha = 11,1.$ d.h. Nullhypothese "Würfel fair" kann nicht abgelehnt werden.

7 Bedingte Erwartungswerte und Bedingte Verteilungen

Sei (Ω, \mathcal{A}, P) ein W'Raum, (Ω', \mathcal{A}') ein Messraum, $Y : \Omega \to \Omega'$ sei $(\mathcal{A}, \mathcal{A}')$ -messbar und nehme die Werte $y_1, \ldots, y_n \in \Omega'$ an. $Y^{-1}(y_k) = \{\omega \in \Omega \mid Y(\omega) = y_k\} =: A_k \Rightarrow \Omega = A_1 + \cdots + A_n \text{ und } \sigma(Y) = \{\sum_{k \in I} A_k \mid I \subset \{1, \ldots, n\}\}.$

Definition Sei $X : \Omega \to \mathbb{R}$ eine ZV mit $E|X| < \infty$. Dann ist der bedingte Erwartungswert von X unter der Bedingung $Y = y_k$ definitiert durch:

$$E[X|Y = y_k] := \frac{1}{P(A_k)} \int_{A_k} X dP, \quad k = 1, \dots, n$$

Falls X diskret mit x_1, \ldots, x_m :

$$E[X|Y = y_k] = \frac{1}{P(Y = y_k)} \sum_{j=1}^{m} x_j \cdot P(X = x_j, Y = y_k)$$
$$= \sum_{j=1}^{m} x_j \cdot P(X = x_j | Y = y_k)$$

Definition Der bedingte Erwartungswert von X gegeben Y ist $E[X|Y]: \Omega \rightarrow \mathbb{R}$ mit

$$E[X|Y](\omega) := \sum_{k=1}^{n} E[X|Y = y_k] \cdot \mathbf{1}_{[Y = y_k]}(\omega)$$

Bemerkung a) Offenbar ist E[X|Y] ($\sigma(Y)$, \mathfrak{B})-messbar.

b) Sei Z := E[X|Y]. Dann gilt

$$\int_{A_k} Z dP = \int_{\Omega} \mathbf{1}_{A_k} Z dP$$

$$= E[X, Y = y_k] \cdot P(A_k)$$

$$= \int_{A_k} X dP$$

Wegen der Struktur von $\sigma(Y)$ folgt auch

$$\int_{A} Z dP = \int_{A} X dP \quad \forall A \in \sigma(Y)$$

c) E[X|Y] = g(Y) mit

$$g(y) = \sum_{k=1}^{n} E[X|Y = y_k] \cdot \mathbf{1}_{\{y_k\}}(y)$$

d) Offenbar hängt die Definition von E[X|Y] nur davom ab, auf welchen Mengen $A_k Y$ die verschiedenen Werte annimmt, nicht aber welche Werte das genau sind.

Deshalb schreibt man auch:

$$E[X|Y] = E[X|\sigma(Y)]$$

Beispiel 7.1 Sei
$$([0,1),\mathfrak{B}_{[0,1)},\underbrace{\lambda_{[0,1)}}_{=:P}),X(\omega)=\omega$$

- Hier fehlt ein Bild -

$$A_k = \left[\frac{k-1}{n}, \frac{k}{n}\right), k = 1, \dots, n, \quad \mathfrak{F} := \left\{\sum_{k \in I} A_k | I \subset \{1, \dots, n\}\right\}$$

$$E[X, A_k] = \frac{1}{P(A_k)} \int_{A_k} \omega P(\mathrm{d}\omega)$$

$$= n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \omega \mathrm{d}\omega$$

$$= \frac{1}{2} \frac{2k-1}{n}$$

 $E[X,\mathfrak{F}]$ ist also eine "Approximation" oder "Vergröberung" von X. Bezüglich einer beliebigen Sub- σ -Algebra $\mathfrak{F} \subset \mathcal{A}$ wird der bedingte Erwartungswert wie folgt definiert:

Definition Sei X eine Zufallsvariable mit $E|X| < \infty$ und $\mathfrak{F} \subset \mathcal{A}$ eine Sub- σ -Algebra von \mathcal{A} . Dann hei β t $Z: \Omega \to \mathbb{R}$ eine Version des bedingten Erwartungswertes $E[X|\mathfrak{F}]$ von X unter \mathfrak{F} , wenn gilt

(i) Z ist \mathfrak{F} -messbar

(ii)
$$\int_A Z dP = \int_A X dP \quad \forall A \in \mathfrak{F}$$

Satz 7.1

Der bedingte Erwartungswert existiert und ist bis auf Nullmengen eindeutig.

Beweis Sei $X \geq 0$. Durch

$$Q(A) := \int_A X(\omega) P(d\omega) \quad \forall A \in \mathfrak{F}$$

wird ein Maß auf (Ω, \mathfrak{F}) definiert (Satz 2.7).

Sei $P_{\mathfrak{F}}$ die Einschränkung von P auf \mathfrak{F} . Offenbar $Q \ll P_{\mathfrak{F}}$. Satz von Radon-Nikodym $\Longrightarrow Q$ besitzt eine Dichte Z bzgl. $P_{\mathfrak{F}}$ und Z ist nach Definition \mathfrak{F} -messbar.

Falls X beliebig: $X = X^+ - X^-$

P-f.s. Eindeutigkeit: Seien Z, \tilde{Z} Versionen von $E[X, \mathfrak{F}]$.

$$\implies \int_A (Z - \tilde{Z}) dP = 0 \quad \forall A \in \mathfrak{F}$$

Wegen $\{Z > \tilde{Z}\} \in \mathfrak{F}, \{Z < \tilde{Z}\} \in \mathfrak{F} \text{ folgt:}$

$$E|Z - \tilde{Z}| = \int_{\{Z > \tilde{Z}\}} (Z - \tilde{Z}) dP - \int_{\{Z < \tilde{Z}\}} (Z - \tilde{Z}) dP = 0$$

$$\implies Z = \tilde{Z} \text{ P-f.s.}$$

Bemerkung Der bedingte Erwartungswert ist also eigentlich die Äquivalenzklasse

$$E[X|\mathfrak{F}] = \left\{ Z \in L^1(\Omega,\mathfrak{F},P) | \int_A Z \mathrm{d}P = \int_A X \mathrm{d}P \ \forall A \in \mathfrak{F} \right\}$$

Ein Element davon nennt man "Version". Oft wird $E[X|\mathfrak{F}]$ mit einer Version identifiziert.

Definition Sei $A \in \mathfrak{F}$. Eine Version von $E[\mathbf{1}_A|\mathfrak{F}]$ bezeichnet man als **Version der** bedingten Wahrscheinlichkeit $P(A|\mathfrak{F})$.

Bemerkung Es gilt für $B \in \mathfrak{F}$:

$$\int_{B} P(A|\mathfrak{F}) dP \stackrel{(ii)}{=} \int_{B} \mathbf{1}_{A} dP = P(A \cap B)$$

Satz 7.2

Sei $X \in L^2(\Omega, \mathcal{A}, P)$ mit $||X||^2 = EX^2$. Dann gilt:

$$||X - E[X|\mathfrak{F}]||^2 = \inf\{||X - Y||^2 | Y \in L^2(\Omega, \mathfrak{F}, P)\}$$

Beweis siehe Henze Stochastik II, S.214

Satz 7.3 (Rechenregeln für bedingte Erwartungswerte)

Es seien $X, Y \in L^1(\Omega, \mathcal{A}, P), \mathfrak{F}, \mathfrak{F}_1, \mathfrak{F}_2$ Sub- σ -Algebra von \mathcal{A} . Dann gilt:

- $a) \ E[aX+bY|\mathfrak{F}] = aE[X|\mathfrak{F}] + bE[Y|\mathfrak{F}] \ P\text{-f.s.} \ a,b \in \mathbb{R}$
- b) E[E[X|Y]] = EX
- c) $X \leq Y \implies E[X|\mathfrak{F}] \leq E[Y|\mathfrak{F}]$ P-f.s.
- d) $F\ddot{u}r \,\mathfrak{F}_1 \subset \mathfrak{F}_2 \, gilt \, E[E[X|\mathfrak{F}_2]|\mathfrak{F}_1] = E[X|\mathfrak{F}_1]$ $F\ddot{u}r \,\mathfrak{F}_1 \supset \mathfrak{F}_2 \, gilt \, E[E[X|\mathfrak{F}_2]|\mathfrak{F}_1] = E[X|\mathfrak{F}_2]$
- e) Falls Y \mathfrak{F} -messbar und $EXY < \infty$ gilt:

$$E[XY|\mathfrak{F}] = YE[X|\mathfrak{F}]$$

f) Falls X von \mathfrak{F} unabhängig ist (d.h. falls die X und $\mathbf{1}_A \ \forall A \in \mathfrak{F}$ unabhängig sind), dann gilt:

$$E[X|\mathfrak{F}] = EX$$

Bemerkung Aus Satz 7.3 bekommt man:

1.
$$X \equiv c \in \mathbb{R} \stackrel{\text{f}}{\Rightarrow} E[c|\mathfrak{F}] = c$$

2.
$$\mathfrak{F} = \{\emptyset, \Omega\} \stackrel{\mathrm{f}}{\Rightarrow} E[X|\mathfrak{F}] = EX$$

3.
$$X \mathfrak{F}$$
-messbar $\stackrel{\mathrm{e}}{\Rightarrow} E[X|\mathfrak{F}] = X$

4.
$$X \ge 0 \stackrel{c)}{\Rightarrow} E[X|\mathfrak{F}] \ge 0$$
 P-f.s.

Beweis von Satz 7.3:

a)

$$\begin{split} \int_A E[aX+bY|\mathfrak{F}]\mathrm{d}P &= \int_A aX+bY\mathrm{d}P \\ &\stackrel{\text{Linearität}}{=} a\int_A X\mathrm{d}P + b\int_A Y\mathrm{d}P \\ &= a\int_A E[X|\mathfrak{F}]\mathrm{d}P + b\int_A E[Y|\mathfrak{F}]\mathrm{d}P \\ &= \int_A \left(aE[X|\mathfrak{F}] + bE[Y|\mathfrak{F}]\right)\mathrm{d}P \quad \forall A \in \mathfrak{F} \end{split}$$

 \implies Behauptung, da $aE[X|\mathfrak{F}]+bE[Y|\mathfrak{F}]$ \mathfrak{F} -messbar und Radon-Nikodym-Dichte P-f.s. eindeutig.

b)
$$E[E[X|\mathfrak{F}]] = \int_{\Omega} E[X|\mathfrak{F}] dP = \int_{\Omega} X dP = EX$$

c)

$$\begin{array}{ll} A & := & \{\omega \in \Omega \, | E[X|\mathfrak{F}](\omega) > E[Y|\mathfrak{F}](\omega) \, \} \in \mathfrak{F} \\ & = & \bigcup_{n \in \mathbb{N}} \underbrace{\left\{\omega \in \Omega \, \middle| E[X|\mathfrak{F}](\omega) > E[Y|\mathfrak{F}](\omega) + \frac{1}{n} \right\}}_{A_n} \end{array}$$

Annahme: $P(A) > 0 \implies \exists n \in \mathbb{N} \text{ mit } P(A_n) > 0$

$$\implies 0 \leq \int_{A_n} (Y - X) dP$$

$$= \int_{A_n} E[Y|\mathfrak{F}] dP - \int_{A_n} E[X|\mathfrak{F}] dP$$

$$= \int_{A_n} (E[Y|\mathfrak{F}] - E[X|\mathfrak{F}]) dP$$

$$\leq -\frac{1}{n} \cdot P(A_n)$$

$$< 0 \text{ Widerspruch!}$$

d) Z.z. Für $\mathfrak{F}_1 \subset \mathfrak{F}_2$ gilt: $E[E[X|\mathfrak{F}_2]|\mathfrak{F}_1] = E[X|\mathfrak{F}_1]$. Sei $A \in \mathfrak{F}_1 \implies A \in \mathfrak{F}_2$ und

$$\int_{A} E[X|\mathfrak{F}_{1}] dP = \int_{A} X dP = \int_{A} E[X|\mathfrak{F}_{2}] dP = \int_{A} E[E[X|\mathfrak{F}_{2}]|\mathfrak{F}_{1}] dP$$

 \implies Behauptung, da Radon-Nikodym-Dichte eindeutig. Für $\mathfrak{F}_1\supset \mathfrak{F}_2$ ähnlich.

- e) Mit algebraischer Induktion:
 - Sei $Y = \mathbf{1}_B, B \in \mathfrak{F}$ und $A \in \mathfrak{F}$ beliebig.

$$\int_A Y \cdot E[X|\mathfrak{F}] \mathrm{d}P = \int_{A \cap B} E[X|\mathfrak{F}] \mathrm{d}P = \int_{A \cap B} X \mathrm{d}P = \int_A Y X \mathrm{d}P$$

Außerdem ist $Y \cdot E[X|\mathfrak{F}]$ \mathfrak{F} -messbar \implies Behauptung, da Radon-Nikodym-Dichte P-f.s. eindeutig.

- Linearität des Integrals + Teil a) \implies Aussage für $Y \in \mathcal{E}.Y \geq 0$: Bedingte Version des Satzes von der monotonen Konvergenz (\rightarrow Übung).
- $Dann Y = Y^+ Y^-$

f)

$$\begin{split} \int_A E[X|\mathfrak{F}] \mathrm{d}P &=& \int_A X \mathrm{d}P \\ &=& \int_\Omega \mathbf{1}_A X \mathrm{d}P \\ &\stackrel{\mathrm{unabh.}}{=} & \int \mathbf{1}_A \mathrm{d}P \cdot \underbrace{\int X \mathrm{d}P}_{=EX} \\ &=& \int_A EX \mathrm{d}P \end{split}$$

 \implies Behauptung, da $EX \mathfrak{F}$ -messbar.

Satz 7.4 (Faktorisierungssatz)

Es seien $(\Omega, \mathcal{A}), (\Omega', \mathcal{A}')$ Messräume und $Y : \Omega \to \Omega'$ ein Zufallsgröße. Ist $X : \Omega \to \mathbb{R}$ eine $(\sigma(Y), \mathfrak{B})$ -messbare Zufallsvariable. Dann gibt es eine \mathfrak{B} -messbare Funktion $g : \Omega' \to \mathbb{R}$ mit

$$X = g \circ Y$$
.

Beweis Algebraische Induktion:

(i) Sei
$$X = \sum_{j=1}^{n} a_{j} \mathbf{1}_{A_{j}} \in \mathcal{E}$$
 mit $a_{j} \geq 0, A_{j} \in \sigma(Y)$.
 $\implies A_{j} = Y^{-1}(A'_{j}), A'_{j} \in \mathcal{A}'$. Wähle $g = \sum_{j=1}^{n} a_{j} \mathbf{1}_{A'_{j}}$
 $\implies X = g \circ Y$
 \implies Behauptung

(ii) Sei $X \geq 0$ und $(\sigma(Y), \mathfrak{B})$ -messbar. $\Longrightarrow \exists (X_n) \subset \mathcal{E}, 0 \leq X_n \uparrow X$ und wegen (i) $\exists (\mathcal{A}', \mathfrak{B})$ -messbare Funktion g_n mit $X_n = g_n \circ Y, n \in \mathbb{N}$.

$$\implies X = \sup_{n \in \mathbb{N}} X_n = \sup_{n \in \mathbb{N}} (g_n \circ Y) = (\sup_{n \in \mathbb{N}} g_n) \circ Y$$

Wähle also $g = \sup_{n \in \mathbb{N}} g_n$

(iii)
$$X = X^+ - X^- \stackrel{\text{(ii)}}{\Longrightarrow} X = g_1 \circ Y - g_2 \circ Y$$
. Wähle $g = g_1 - g_2$.

Bemerkung Statt $E[X|\sigma(Y)]$ schreiben wir auch E[X|Y] und wegen Satz 7.4 $\exists g: \Omega' \to \mathbb{R}$ $(\mathcal{A}', \mathfrak{B})$ -messbar mit $E[X|Y] = g \circ Y$ P-f.s.. Die Funktion g ist P^Y -f.s. eindeutig.

Definition Ist $E[X|Y] = g \circ Y$ wie oben, so heißt E[X|Y = y] = g(y) (ein) bedingter Erwartungswert von X unter der Bedingung Y = y.

Satz 7.5

Für alle $A' \in \mathcal{A}'$ gilt:

$$\int_{A'} E[X|Y = y]P^{Y}(dy) = \int_{Y^{-1}(A')} X dP$$

Beweis

$$\int_{A'} E[X|Y=y]P^Y(\mathrm{d}y) = \int_{A'} g \mathrm{d}P^Y \overset{\mathrm{Sa. 2.4}}{=} \int_{Y^{-1}(A')} g \circ Y \mathrm{d}P = \int_{Y^{-1}(A')} X \mathrm{d}P.$$

Bemerkung Für $A \in \mathcal{A}$ heißt $P(A|Y=y) := E[\mathbf{1}_A|Y=y]$ (eine) bedingte Wahrscheinlichkeit von A unter der Bedingung Y=y. Bedingte Wahrscheinlichkeiten treten oft bei gekoppelten Zufallsexperimenten auf. Die folgende Sichtweise ist konstruktiver:

Definition Es seien $(\Omega_1, \mathcal{A}_1), (\Omega_2, \mathcal{A}_2)$ messbare Räume. Eine Abbildung $Q : \Omega_1 \times \mathcal{A}_2 \to [0, 1]$ mit

- (i) $\omega_1 \mapsto Q(\omega_1, A_2)$ ist A_1 -messbar $\forall A_2 \in A$.
- (ii) $A_2 \mapsto Q(\omega_1, A_2)$ ist ein Wahrscheinlichkeitsmaß auf $(\Omega_2, A_2) \ \forall \omega_1 \in \Omega_1$ nennt man **Übergangskern** oder **Kern** von (Ω_1, A_1) nach (Ω_2, A_2) .

Satz 7.6

Es seien $(\Omega_1, \mathcal{A}_1, P_1)$ ein Wahrscheinlichkeitsraum, $(\Omega_2, \mathcal{A}_2)$ ein Messraum und Q ein Übergangskern von $(\Omega_1, \mathcal{A}_1)$ nach $(\Omega_2, \mathcal{A}_2)$. Dann wird durch

$$P(A) := \int_{\Omega_1} \left(\int_{\Omega_2} \mathbf{1}_A(\omega_1, \omega_2) Q(\omega_1, d\omega_2) \right) P_1(d\omega_1)$$

ein Wahrscheinlichkeitsmaß $P =: P_1 \otimes Q$ auf $A_1 \otimes A_2$ definiert. P heißt **Koppelung** und ist das einzige Wahrscheinlichkeitsmaß auf $A_1 \otimes A_2$ mit der Eigenschaft

$$P(A_1 \times A_2) = \int_{A_1} Q(\omega_1, A_2) P_1(d\omega_1) \quad (*)$$

Beweis

- 1. Ähnlich wie in §3 zeigt man: für $f: \Omega_1 \times \Omega_2 \to \mathbb{R}_+$, $f(A_1 \otimes A_2)$ -messbar ist $\omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) Q(\omega_1, d\omega_2) A_1$ -messbar.
- 2. Für $A = A_1 \times A_2$ ist $\mathbf{1}_A(\omega_1, \omega_2) = \mathbf{1}_{A_1}(\omega_1)\mathbf{1}_{A_2}(\omega_2) \implies (*)$.
- 3. $P(\Omega_1 \times \Omega_2) = 1$ wegen (*). $P \ge 0$ ist klar.

$$P\left(\sum_{n=1}^{\infty} A_{n}\right) = \int_{\Omega_{1}} \left(\int_{\Omega_{2}} \underbrace{\mathbf{1}_{\sum_{n=1}^{\infty}}(\omega_{1}, \omega_{2})}_{=\sum_{n=1}^{\infty} \mathbf{1}_{A_{n}}(\omega_{1}, \omega_{2})} Q\left(\omega_{1}, d\omega_{2}\right)\right) P_{1}\left(d\omega_{1}\right)$$

$$= \sum_{n=1}^{\infty} \left(\int_{\Omega_{1}} \left(\int_{\Omega_{2}} \mathbf{1}_{A_{n}}\left(\omega_{1}, \omega_{2}\right) Q\left(\omega_{1}, d\omega_{2}\right)\right) P_{1}\left(d\omega_{1}\right)\right)$$

$$= \sum_{n=1}^{\infty} P(A_{n}).$$

4. Eindeutigkeitssatz für Maße.

Satz 7.7 Es seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $(\Omega_1, \mathcal{A}_1)$ ein messbarer Raum, $Y: \Omega \to \Omega_1$ $(\mathcal{A}, \mathcal{A}_1)$ -messbar und X ein d-dimensionaler Zufallsvektor. Dann existiert ein Kern Q von $(\Omega_1, \mathcal{A}_1)$ nach $(\mathbb{R}^d, \mathfrak{B}^d)$ derart, dass

$$P^{X,Y} = P^Y \otimes Q.$$

Q ist eine Version der bedingten Verteilung von X unter Y. Schreibweise:

$$Q(y,\cdot) = P^X(\cdot|Y=y).$$

Beweis - ohne Beweis -

Bemerkung Für $A \in \mathcal{A}, B \in \mathfrak{B}^d$ gilt:

$$P(X \in B, Y \in A) = \int_{A} Q(y, B) P^{Y} dy = \int_{A} P^{X} (B|Y = y) P^{Y} (dy)$$

Satz 7.8

Es seien μ und ν σ -endliche Maße auf \mathcal{A}_1 bzw. \mathfrak{B}^d . $P^{(Y,X)}$ besitze eine Dichte f bezüglich $\mu \otimes \nu$. Es sei $f_Y(y) := \int_{\mathbb{R}^d} f(x,y)\nu(dx)$ die (Rand-)Dichte von P^Y bzgl. μ . Weiterhin sei

$$f(x|y) := \frac{f(x,y)}{f_Y(y)} \quad und \quad \frac{0}{0} := 0.$$

So wird durch

$$P^{X}(B|Y=y) := \int_{B} f(x|y)\nu(dx) \quad \forall B \in \mathfrak{B}^{d}, y \in \Omega_{1}$$

eine bedingte Verteilung von X unter der Bedingung Y = y definiert. $f(\cdot|y)$ heißt bedingte ν -Dichte von X unter der Bedingung Y = y.

Beweis

 $y\mapsto \int_B f(x|y)\nu(\mathrm{d}x)$ ist messbar $\forall B\in\mathfrak{B}^d$ (Satz von Tonelli), $B\mapsto \int_B f(x|y)\nu(\mathrm{d}x)$ ist ein Wahrscheinlichkeitsmaß $\forall y\in\Omega_1$. Für $A\in\mathcal{A}_1, B\in\mathfrak{B}^d$ gilt:

$$P^{(Y,X)}(A \times B) = \int_{A \times B} f d(\mu \otimes \nu)$$

$$= \int_{A} \left(\int_{B} f(x,y) \nu(dx) \right) \mu(dy)$$

$$= \int_{A} \left(\int_{B} f(x|y) \nu(dx) \right) f_{Y}(y) \mu(dy)$$

$$\stackrel{!}{=} \int_{A} P^{X}(B|Y=y) \underbrace{P^{Y}(dy)}_{=f_{Y}(y)\mu(dy)}$$

Satz 7.9

Es seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $Y : \Omega \to \mathbb{R}^d$ ein Zufallsvektor und X eine Zufallsvariable mit $E|X| < \infty$. Dann ist

$$h(y) := \int_{\mathbb{R}} x P^X (dx | Y = y)$$

ein bedingter Erwartungswert von X unter der Bedingung Y = y.

Beweis Nach 7.5:

$$\int_{B} E\left[X|Y=y\right] P^{Y}\left(\mathrm{d}y\right) = \int_{Y^{-1}(B)} X \mathrm{d}P.$$

Für $B \in \mathfrak{B}^d$ und $T(Y,X) := X \cdot (\mathbf{1}_B \circ Y)$ gilt:

$$\int_{Y^{-1}(B)} X dP = \int T(Y, X) dP$$

$$\stackrel{2.4}{=} \int T(y, x) P^{(Y,X)} (dy, dx)$$

$$= \int x \mathbf{1}_{B}(y) P^{(Y,X)} (dy, dx)$$

$$= \int_{B} \left(\int_{\mathbb{R}} x P^{X} (dx | Y = y) \right) P^{Y} (dy)$$

 $\stackrel{7.5}{\Longrightarrow}$ Beh.

Beispiel 7.2

U und V seien unabhängig und U(0,1)-verteilt und entsprechen den zufälligen Seitenlängen eines Rechtecks. Es sei X=Flächeninhalt des Rechtecks und Y=Umfang des Rechtecks. Klar: X und Y sind nicht unabhängig.

Weiter ist
$$f_{U,V}(u,v) = \begin{cases} 1 & 0 < u < 1 \text{ und } 0 < v < 1 \\ 0 & \text{sonst} \end{cases}$$
 die gemeinsame Dichte von U und V . \Longrightarrow (Transformationssatz für Dichten) $f_{X,Y}(x,y) = \frac{2}{\sqrt{y^2 - 16x}}$ für $0 < x < 1$ und $4\sqrt{x} < y < 2 + 2x; f_X(x) = -\log x$ für $0 < x < 1$. $\Longrightarrow f(y|x) = -\frac{2}{\log x \sqrt{y^2 - 16x}}$ für $4\sqrt{x} < y < 2 + 2 + x$. $\Longrightarrow E[Y|X=x] = \int y \cdot f(y|x) \mathrm{d}y = -\frac{4(1-x)}{\log x}$.

Beispiel 7.3 (Buffonsches Nadelproblem)

Wir werfen eine Nadel der Länge 1 zufällig auf einen unendlich langen Streifen der Breite 1. Wie groß ist die Wahrscheinlichkeit, dass die Nadel mindestens eine Wand des Korridors schneidet?

X = Abstand der Nadelmitte von der linken Wand

Y = Winkel der Nadel zum Lot

Annahme: $X \sim U(0,1), Y \sim U(-\frac{\pi}{2}, \frac{\pi}{2})$ und X, Y unabhängig.

A= Nadel schneidet die Wand = $\{\omega \mid (X,Y)(\omega) \in B\}$ mit

 $B = \{(x,y) \mid |y| < \frac{\pi}{2}, x \in [0, \frac{1}{2}\cos y] \cup [1 - \frac{1}{2}\cos y, 1]\}$

- hier fehlt eine Skizze -

Es ergibt sich:

$$P(A) = P^{X,Y}(B)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{1} \mathbf{1}_{B}(x,y) P^{X}(dx|Y = y) P^{Y}(dy)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} P^{X}([0, \frac{\cos y}{2}] \cup [1 - \frac{\cos y}{2}, 1] | Y = y) P^{Y}(dy)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos y \cdot \frac{1}{\pi} dy$$

$$= \frac{2}{\pi}$$

So läßt sich zum Beispiel auch π näherungsweise bestimmen.

8 Martingale und Stoppzeiten

Definition Sei $I \neq \emptyset$ eine beliebige Indexmenge und (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum.

- a) Eine Familie von Zufallsvariablen $(X_t)_{t\in I}$ auf (Ω, \mathcal{A}, P) heißt stochastischer **Prozess** $(I \subset \mathbb{R})$
- b) Eine Familie von σ -Algebren $(\mathfrak{F}_t)_{t\in I}$, mit $\mathfrak{F}_t \subset \mathcal{A}$ und $\mathfrak{F}_s \subset \mathfrak{F}_t$, für $s \leq t$ heißt Filtration. Ein stochastischer Prozess $(X_t)_{t\in I}$ heißt $(\mathfrak{F}_t)_{t\in I}$ -adaptiert, falls X_t \mathfrak{F}_t -messbar $\forall t \in I$.

Bemerkung Oft wird $\mathfrak{F}_t := \sigma(\{X_s, s \leq t\})$ gewählt. Dann ist $(\mathfrak{F}_t)_{t \in I}$ eine Filtration und X_t ist \mathfrak{F}_t -messbar.

Definition Gegeben sei ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, P), I \subset \mathbb{R}$, eine Filtration $(\mathfrak{F}_t)_{t\in I}$ und ein dazu adaptierter stochastischer Prozess $(X_t)_{t\in I}$. Ist $E|X_t| < \infty \ \forall t \in I$, so heißt $(X_t)_{t\in I}$ ein $(\mathfrak{F}_t)_{t\in I}$ -Martingal, falls $E[X_t|\mathfrak{F}_s] = X_s \ \forall s,t \in I,s \leq t$.

Ist $X_s \leq E[X_t|\mathfrak{F}_s]$ bzw. $X_s \geq E[X_t|\mathfrak{F}_s]$, so nennt man $(X_t)_{t\in I}$ ein $(\mathfrak{F}_t)_{t\in I}$ -Submartingal bzw. $(\mathfrak{F}_t)_{t\in I}$ -Supermartigal.

- **Bemerkung** a) Beim Martingal gilt: $EX_s = E[E[X_t | \mathfrak{F}_s]] = EX_t \ \forall t \in I$, d.h. der Erwartungswert ist konstant (wachsend beim Submartingal, fallend beim Supermartingal).
 - b) Ist $I = \mathbb{N}$, so genügt z.z.:

$$E[X_{t+1}|\mathfrak{F}_t] = X_t \ \forall t \in \mathbb{N}$$

c) Ist $(F_t)_{t\in I}$ die natürliche Filtration, so sagt man oft nur $(X_t)_{t\in I}$ ist ein Martingal.

Beispiel 8.1 Sei $I = \mathbb{N}, (X_n)_{n \in \mathbb{N}}$ eine Folge von unabhängigen und identisch verteilten Zufallsvariablen mit Erwartungswert μ . Sei $S_n := \sum_{k=1}^n X_k \ \forall n \in \mathbb{N}$ und $\mathfrak{F}_n := \sigma(S_1, \ldots, S_n)$. Dann gilt $\forall n \in \mathbb{N} : E[S_{n+1}|\mathfrak{F}_n] = E[S_n|\mathfrak{F}_n] + E[X_{n+1}|\mathfrak{F}_n] = S_n + \mu$.

Also: $\mu = 0 \implies (S_n)$ ist Martingal

 $\mu \leq 0 \implies (S_n)$ ist Supermartingal

 $\mu \geq 0 \implies (S_n)$ ist Submartingal

Beispiel 8.2 Sei $(\mathfrak{F}_t)_{t\in I}$ eine Filtration und X eine Zufallsvariable mit $E|X|<\infty$. Sei $X_t:=E[X|\mathfrak{F}_t]$. dann ist $(X_t)_{t\in I}$ adaptiert und $\forall s,t\in I,s\leq t$:

$$E[X_t|\mathfrak{F}_s] = E[E[X|\mathfrak{F}_t]|\mathfrak{F}_s] \stackrel{S.7.3a)}{=} E[X|\mathfrak{F}_s] = X_s$$

 $\implies (X_t)_{t \in I}$ ist ein $(\mathfrak{F}_t)_{t \in I}$ -Martingal.

Satz 8.1

Ist $(X_t)_{t\in I}$ ein $(\mathfrak{F}_t)_{t\in I}$ -Martingal und $\Phi: \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion mit $E|\Phi(X_t)| < \infty \ \forall t\in I, \ so \ ist \ (\Phi(X_t))_{t\in I} \ ein \ (\mathfrak{F}_t)_{t\in I}$ -Submartingal.

Beweis Sei
$$s, t \in I, s \leq t : E[\Phi(X_t)|\mathfrak{F}_s] \stackrel{Jensen}{\geq} \Phi(\underbrace{E[X_t|\mathfrak{F}_s]})$$

Im Folgenden: $I = \{1, 2, \dots, n\}$ und $X^* := \max_{1 \le i \le n} X_i$

Satz 8.2 (Submartingal-Ungleichung von Doob)

Ist $(X_i)_{i=1,\dots,n}$ ein $(\mathfrak{F}_i)_{i=1,\dots,n}$ -Submartingal, so gilt $\forall c>0$:

$$c \cdot P(X^* > c) \le \int_{\{X^* > c\}} X_n dP \le EX_n^+$$

$$\begin{array}{ll} \textbf{Beweis} \;\; \text{Sei} \;\; A := \{X^* > c\}, A_i := \{X_1 \leq c, \ldots, X_{i-1} \leq c, X_i > c\}, i = 1, \ldots, n \\ \Longrightarrow \;\;\; A = A_1 + \ldots + A_n, A_i \in \mathfrak{F}_i \;\; \text{und} \;\; X_i > c \;\; \text{auf} \;\; A_i, i = 1, \ldots, n. \\ \Longrightarrow \;\;\; \int_{A_i} X_n \mathrm{d}P \stackrel{bed.EW}{=} \int_{A_i} E[X_n | \mathfrak{F}_i] \mathrm{d}P \stackrel{Sub-M.}{\geq} \int_{A_i} X_i \mathrm{d}P \geq cP(A_i), i = 1, \ldots, n \\ \mathrm{Summation} \;\; \text{über} \;\; i = 1, \ldots, n \;\; \Longrightarrow \;\; 1. \;\; \mathrm{Ungleichung} \\ 2. \;\; \mathrm{Ungleichung} : \;\; X_n \cdot \mathbf{1}_A \leq X_n^+ \end{aligned}$$

Satz 8.3 (L^p -Ungleichung von Doob)

Es sei p > 1 und $(X_i)_{i=1,\dots,n}$ ein nicht-negatives $(\mathfrak{F}_i)_{i=1,\dots,n}$ -Submartingal mit der Eigenschaft $\sup_{i=1,\dots,n} EX_i^p < \infty$. Dann gilt:

$$E(X^*)^p \le \left(\frac{p}{p-1}\right)^p EX_n^p$$

Beweis

$$E(X^*)^p = E \int_0^{X^*} p \cdot y^{p-1} dy$$

$$= E \int_0^{\infty} p \cdot y^{p-1} \mathbf{1}_{[X^* \ge y]} dy$$

$$\stackrel{\text{Fubini}}{=} \int_0^{\infty} p y^{p-1} \cdot P(X^* \ge y) dy$$

$$\stackrel{S.8.2}{\le} \int_0^{\infty} p \cdot y^{p-2} E \left[X_n \cdot \mathbf{1}_{[X^* \ge y]} \right] dy$$

$$\stackrel{\text{Fubini}}{=} E \left[X_n \int_0^{X^*} p y^{p-2} dy \right]$$

$$= \frac{p}{p-1} E \left[X_n (X^*)^{p-1} \right]$$

$$\stackrel{\text{Hölder}}{\le} \frac{p}{p-1} (EX_n^p)^{\frac{1}{p}} \left(E \left((X^*)^{p-1} \right)^q \right)^{\frac{1}{q}}$$

$$= \frac{p}{p-1} (EX_n^p)^{\frac{1}{p}} \cdot (E(X^*)^p)^{1-\frac{1}{p}}$$

Teile Ungleichung durch $(E(X^*)^p)^{1-\frac{1}{p}}$ (falls $E(X^*)^p=0$ ist Aussage richtig) und nehme p-te Potenz \implies Behauptung.

Bemerkung a) Ist $\frac{1}{p} + \frac{1}{q} = 1$, so lässt sich Satz 8.3 schreiben als $||X^*||_p \le q \cdot ||X_n||_p$

- b) Ein stochastischer Prozess $(X_t)_{t\in I}$ mit $\sup_{t\in I}||X_t||_p<\infty$ heißt L^p -beschränkt.
- c) Ist $(X_i)_{i=1,\dots,n}$ ein Martingal, so ist $(|X_i|)_{i=1,\dots,n}$ ein nicht negatives Submartingal (Satz 8.1)

Beispiel 8.3 Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $(X_n)_{n \in \mathbb{N}_0}$ ein stochastischer Prozess. Interpretation von (X_n) :

 $X_0 \equiv \text{Anfangskapital des Spielers}$

 $X_n - X_{n-1} \equiv \text{Gewinnn}$ pro gesetzter Geldeinheit in der *n*-ten Runde Wird immer eine Geldeinheit pro Runde gesetzt, so ist also $X_n = X_0 + \sum_{k=1}^n (X_k - X_{k-1})$ das Kapital des Spielers nach *n* Runden. Es sei

$$\mathfrak{F}_n = \sigma(X_0, X_1 - X_0, \dots, X_n - X_{n-1}) = \sigma(X_0, X_1, \dots, X_n)$$

Das entspricht der Information nach n Runden.

$$\implies E[X_{n+1} - X_n | \mathfrak{F}_n] = E[X_{n+1} | \mathfrak{F}_n] - X_n$$

Das entspricht dem erwarteten Gewinn pro gesetzter Geldeinheit bei Kenntnis des bisherigen Spielverlaufs.

Offfenbar gilt:

X Martingal \iff Spiel fair X Supermartingal \iff Spiel nachteilig

X Submartingal \iff Spiel vorteilhaft

Beispiel 8.4

 $X_n - X_{n-1}$ sei der Gewinn pro gesetzter Geldeinheit (GE) in der n-ten Runde. Jetzt: In Runde n werden c_n GE gesetzt mit c_n \mathfrak{F}_{n-1} -messbar.

 $\mathfrak{F}_n = \sigma(X_0, X_1 - X_0, \dots, X_n - X_{n-1}), \text{ d.h. } (c_n)_{n \in \mathbb{N}} \text{ ist vorhersagbar.}$

Kapital nach n Spielen:

$$X_0 + \sum_{k=1}^{n} c_k (X_k - X_{k-1})$$

Satz 8.4

Es seien $(c_n)_{n\in\mathbb{N}}$ ein vorhersagbarer Prozess und $X=(X_n)_{n\in\mathbb{N}}$ ein Prozess mit $E|c_n(X_n-X_{n-1})|<\infty$ $\forall n\in\mathbb{N}$. Wir setzen

$$Y_n := X_0 + \sum_{k=1}^n c_k (X_k - X_{k-1}), \ Y = (Y_n)_{n \in \mathbb{N}}.$$

Dann gilt:

a) Ist X ein Martingal, so auch Y.

b) Ist X ein Sub- bzw. Supermartingal und $c_n \ge 0 \quad \forall n$, so ist auch Y ein Sub-bzw. Supermartingal.

Beweis

$$E[Y_{n+1} - Y_n | \mathfrak{F}_n] = E[c_{n+1}(X_{n+1} - X_n) | \mathfrak{F}_n] \stackrel{c_{n+1}\mathfrak{F}_n - m.b.}{=} c_{n+1} \cdot E[X_{n+1} - X_n | \mathfrak{F}_n].$$

Definition

Eine Abbildung $\tau: \Omega \to \mathbb{N}_0 \cup \{\infty\}$ heißt **Stoppzeit** bezüglich einer Filtration $(\mathfrak{F}_n)_{n\in\mathbb{N}}$, wenn

$$\{\tau \leq n\} \in \mathfrak{F}_n \quad \forall n \in \mathbb{N}_0.$$

Bemerkung

- a) Stoppzeiten kann man analog für $\tau:\Omega\to\mathbb{R}_+\cup\{\infty\}$ definieren.
- b) $\tau: \Omega \to \mathbb{N}_0 \cup \{\infty\}$ ist Stoppzeit $\iff \{\tau = n\} \in \mathfrak{F}_n \quad \forall n \in \mathbb{N}_0$. (Übung)

Beispiel 8.5

a)
$$\tau \equiv n_0$$
 ist Stoppzeit, da
$$\{\tau \leq n\} = \begin{cases} \Omega & n \geq n_0 \\ \emptyset & n < n_0 \end{cases} \in \mathfrak{F}_n$$

b) Sei $(X_n)_{n\in\mathbb{N}_0}$ ein zu $(\mathfrak{F}_n)_{n\in\mathbb{N}_0}$ adaptierter rellwertiger Prozess und $A\in\mathfrak{B}$. Sei $\tau_A:\Omega\to\mathbb{N}\cup\{\infty\}$ definiert durch

$$\tau_A(\omega) := \inf \{ n \in \mathbb{N}_0 \mid X_n(\omega) \in A \} \quad (\inf \{\emptyset\} := \infty)$$

 τ_A heißt **Eintrittszeit** in A. τ_A ist Stoppzeit, da

$$\{\tau_A \le n\} = \bigcup_{i=1}^n \underbrace{\{X_i \in A\}}_{\in \mathfrak{F}_i} \in \mathfrak{F}_n.$$

Lemma 8.1

a) Für eine Stoppzeit ist

$$\mathfrak{F}_{\tau} := \{ A \in \mathcal{A} \mid A \cap \{ \tau \le n \} \in \mathfrak{F}_n \quad \forall n \in \mathbb{N}_0 \}$$

eine σ -Algebra, die σ -Algebra der τ -Vergangenheit.

b) Sind τ_1 , τ_2 Stoppzeiten mit $\tau_1 \leq \tau_2$, so gilt $\mathfrak{F}_{\tau_1} \subset \mathfrak{F}_{\tau_2}$.

c) Ist τ eine Stoppzeit, so ist $X_{\tau}^*: \Omega \to \mathbb{R}$ mit

$$X_{\tau}^{*}(\omega) := \begin{cases} X_{\tau(\omega)}(\omega) & wenn \ \tau(\omega) < \infty \\ 0 & sonst \end{cases} \quad \mathfrak{F}_{\tau}\text{-}messbar$$

Beweis

- a) Übung.
- b) Sei $A \in \mathfrak{F}_{\tau_1}$ beliebig. $\forall n \in \mathbb{N}$ gilt:

$$\{\tau_2 \le n\} \subset \{\tau_1 \le n\} \implies A \cap \{\tau_2 \le n\} = \underbrace{A \cap \{\tau_1 \le n\}}_{\in \mathfrak{F}_n} \cap \underbrace{\{\tau_2 \le n\}}_{\in \mathfrak{F}_n} \in \mathfrak{F}_n.$$

 \implies Beh.

c) zu zeigen: $\{X_{\tau}^* \in A\} \in \mathfrak{F}_{\tau} \quad \forall A \in \mathfrak{B}$ zeige also: $\{X_{\tau}^* \in A\} \cap \{\tau \leq n\} \in \mathfrak{F}_n \quad \forall n \in \mathbb{N}_0$ Es gilt:

$$\{X_{\tau}^* \in A\} \cap \{\tau \le n\} = \bigcup_{k=0}^n \underbrace{\{X_k \in A\}}_{\in \mathfrak{F}_k} \cap \underbrace{\{\tau = k\}}_{\in \mathfrak{F}_k} \in \mathfrak{F}_k,$$
 da
$$\{\tau = k\} = \underbrace{\{\tau \le k\}}_{\in \mathfrak{F}_k} \cap \underbrace{\{\tau \le k - 1\}^C}_{\in \mathfrak{F}_k} \in \mathfrak{F}_k.$$

 \implies Beh.

Bemerkung

- a) $\mathfrak{F}_{\tau} \equiv \text{Information}$, die bis zur zufälligen Zeit τ vorhanden ist.
- b) Falls τ P-f.s. endlich, schreibt man X_{τ} statt X_{τ}^* .
- c) Ist τ eine Stoppzeit und $(X_n)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess, so ist $X^{\tau}=(X_n^{\tau})_{n\in\mathbb{N}_0}$ mit $X_n^{\tau}:=X_{\tau\wedge n} \quad \forall n\in\mathbb{N}_0$ der **gestoppte Prozess**. Da $\tau\wedge n$ eine Stoppzeit ist, ist wegen Lemma 8.1c) $X_{\tau\wedge n}$ $\mathfrak{F}_{\tau\wedge n}$ -messbar und (X_n^{τ}) ist $(\mathfrak{F}_{\tau\wedge n})$ -adaptiert.

Satz 8.5

Ist X ein (Sub-, Super-) Martingal und ist τ eine Stoppzeit, so ist auch X^{τ} ein (Sub-, Super-) Martingal.

Beweis

Sei
$$c_n := \mathbf{1}_{\{\tau \geq n\}} \implies \{\tau \geq n\} = \{\tau \leq n-1\}^C \in \mathfrak{F}_{n-1}.$$

 $\implies (c_n)_{n \in \mathbb{N}_0}$ ist vorhersagbar. Da $X_0 + \sum_{k=1}^n c_k(X_k - X_{k-1}) = X_{\tau \wedge n}$, folgt die Behauptung mit Satz 8.4.

Bemerkung

Ist X ein Martingal, so auch X^{τ} und damit gilt $EX_{\tau \wedge n} = EX_0$.

Betrachte Bsp 8.4 mit $\tau := \inf\{k \in \mathbb{N}_0 \mid X_k \geq X_0 + c\}$ und $c_n := \mathbf{1}_{\{\tau \geq n\}}$:

Solange c nicht erreicht ist, wird eine Geldeinheit gesetzt, danach aufgehört. Spielt man maximal n-mal, so ist $X_{\tau \wedge n}$ das Kapital am Ende. Im Mittel kann man das Kapital bei einem fairen Spiel nicht erhöhen.

Beispiel 8.6 (Kartenspiel)

Sei

- S_0 die Anzahl der schwarzen Karten und
- R_0 die Anzahl der roten Karten und
- $N := S_0 + R_0$ die Gesamtzahl an Karten.
- (R_n, S_n) die Anzahl der roten / schwarzen Karten im Stapel, nachdem n Karten aufgedeckt wurden.
- Z_n die Farbe der n-ten aufgedeckten Karte.
- $\mathfrak{F}_n = \sigma(Z_1, \ldots, Z_n)$ und
- $\bullet \ X_n := \frac{S_n R_n}{S_n + R_n}.$

Behauptung: (X_n) ist (\mathfrak{F}_n) -Martingal!

$$E[X_{n+1} | \mathfrak{F}_n] = E\left[\frac{S_{n+1} - R_{n+1}}{S_{n+1} + R_{n+1}} | Z_1, \dots, Z_n\right]$$

$$= \frac{S_n}{S_n + R_n} \left[\frac{S_n - 1 - R_n}{S_n - 1 + R_n}\right] + \frac{R_n}{S_n + R_n} \left[\frac{S_n - R_n + 1}{S_n + R_n - 1}\right]$$

$$= \frac{(R_n + S_n - 1)(S_n - R_n)}{(S_n + R_n)(S_n + R_n - 1)}$$

$$= \frac{S_n - R_n}{S_n + R_n}$$

Sei τ eine Stoppzeit ($\leq N$). Erwarteter Gewinn:

$$E\left[\mathbf{1}_{[Z_{\tau+1}=\text{ schwarz}]} - \mathbf{1}_{[Z_{\tau+1}=\text{ rot}]}\right]$$

$$= E\left[\sum_{k=1}^{N} \left(\mathbf{1}_{[Z_{k+1}=\text{ schwarz}]} - \mathbf{1}_{[Z_{k+1}=\text{ rot}]}\right) \mathbf{1}_{[\tau=k]}\right]$$

$$= \sum_{k=1}^{N} E\left[E\left[\left(\mathbf{1}_{[Z_{k+1}=\text{ schwarz}]} - \mathbf{1}_{[Z_{k+1}=\text{ rot}]}\right) \mathbf{1}_{[\tau=k]} \mid \mathfrak{F}_{k}\right]\right]$$

$$= \sum_{k=1}^{N} E\left[\mathbf{1}_{[\tau=k]} \underbrace{E\left[\mathbf{1}_{[Z_{k+1}=\text{ schwarz}]} - \mathbf{1}_{[Z_{k+1}=\text{ rot}]} \mid \mathfrak{F}_{k}\right]}_{=\frac{S_{k}-R_{k}}{S_{k}+R_{k}} = X_{k}}\right]$$

$$= E[X_{\tau}] = EX_0 = \frac{S_0 - R_0}{S_0 + R_0}$$

 $EX_{\tau} = EX_0$ gilt nur unter einer Bedingung, wie dieses Beispiel zeigt.

Beispiel 8.7 Sei $(Y_n)_{n\in\mathbb{N}}$ eine Folge von u.i.v. ZVen mit

$$P(Y_n = -1) = P(Y_n = 1) = \frac{1}{2}, \quad X_0 \equiv 0$$

 $Y_n =$ Ergebnis Münzwurf in Runde n.

Der Spieler setzt 2^{n-1} GE in der n-ten Runde, bei Gewinn erhält er 2^n GE, d.h. $Y_n \cdot 2^{n-1}$ ist der Geldzu-/abgang in der n-ten Runde.

Kapital nach n Runden:

$$X_n := \sum_{i=1}^{n} 2^{i-1} Y_i$$

Sei $\mathfrak{F}_n := \sigma(X_0, \ldots, X_n)$ und $\tau := \inf\{n \in \mathbb{N} \mid Y_n = 1\}$ d.h. gestoppt wird, wenn erstmals $Y_n = 1$ (\to Martingalstrategie). $(X_n)_{n \in \mathbb{N}}$ ist ein $(\mathfrak{F}_n)_{n \in \mathbb{N}}$ -Martingal (s. Bsp. 8.1).

Es gilt:

$$P(\tau > k) = \left(\frac{1}{2}\right)^k \ \forall k \in \mathbb{N} \Rightarrow P(\tau < \infty) = 1$$

und

$$X_{\tau} = \sum_{k=1}^{\infty} X_k \mathbf{1}_{\tau=k} = \sum_{k=1}^{\infty} \left(-\sum_{i=1}^{k-1} 2^{i-1} + 2^{k-1} \right) \mathbf{1}_{\tau=k} \equiv 1$$

Also ist hier $EX_{\tau} = 1 \neq EX_0 = 0$.

Vorsicht bei der Nachahmung!

Das benötigte Kapital beträgt $-X_{\tau-1}$ GE und

$$E(-X_{\tau-1}) = E\left(\sum_{k=1}^{\tau-1} 2^{k-1}\right)$$

$$= E\left(\sum_{k=1}^{\infty} 2^{k-1} \mathbf{1}_{[\tau>k]}\right)$$

$$= \sum_{k=1}^{\infty} 2^{k-1} \underbrace{P(\tau>k)}_{-2^{-k}} = \infty$$

Satz 8.6 (Optional Stopping Theorem OST)

Es sei $X = (X_n)_{n \in \mathbb{N}}$ ein Supermartingal und τ eine Stoppzeit. Jede der folgenden Bedingungen impliziert, dass $E|X_{\tau}| < \infty$ und $EX_{\tau} \leq EX_1$ gilt:

1. τ ist f.s. beschränkt, also $P(\tau < c) = 1$ für ein $c \in \mathbb{R}$.

- 2. τ ist f.s. endlich und X ist f.s. beschränkt, d.h. $P(\tau < \infty) = 1$ und es gibt ein $c \in \mathbb{R}$ mit $P(|X_n| \le c) = 1 \ \forall n \in \mathbb{N}_0$.
- 3. $E\tau < \infty$ und X hat f.s. beschränkte Zuwächse, d.h. $\exists c \in \mathbb{R}$ mit $P(|X_n X_{n-1}| \le c) = 1 \ \forall n \in \mathbb{N}$.
- 4. $P(\tau < \infty) = 1, E|X_{\tau}| < \infty \text{ und } \int_{\{\tau > n\}} |X_n| dP \to 0 \text{ für } n \to \infty.$

Ist eine dieser Bedingungen erfüllt und X ein Martingal, so gilt: $EX_{\tau} = EX_1$.

Beweis 1. Ist klar, da hier $X_{\tau} = X_{\tau \wedge n}$ für ein $n \in \mathbb{N}$ groß (n > c). Die Behauptung folgt aus Satz 8.5.

- 2. Satz 8.5 und majorisierte Konvergenz.
- 3. Verwende $|X_1| + c(\tau 1)$ als integrierbare Majorante.
- 4. Wir zeigen die Aussage für X ist Martingal:

$$|EX_{\tau} - EX_{\tau \wedge n}| = |\int X_{\tau} dP - \int_{\{\tau \leq n\}} X_{\tau} dP - \int_{\{\tau > n\}} X_{n} dP|$$

$$\leq |\int_{\{\tau > n\}} X_{\tau} dP| + |\int_{\{\tau > n\}} X_{n} dP|$$

$$\leq \underbrace{\int_{\{\tau > n\}} |X_{\tau}| dP}_{\to 0(n \to \infty)} + \underbrace{\int_{\{\tau > n\}} |X_{n}| dP}_{\to 0(n \to \infty)} \to 0 \ (n \to \infty)$$

Beispiel 8.8 (Ruinspiel, vgl. Stochastik I, Bsp 10.4) Spieler I besitze n GE $(n \in \mathbb{N})$, Spieler II N-n GE $(N-n \in \mathbb{N})$. Pro Runde gewinnt Spieler I von Spieler II 1 GE mit W'keit p und verliert eine GE an Spieler II mit W'keit 1-p. Spielrunden sind unabhängig. Seien $(Y_n)_{n \in \mathbb{N}}$ u.i.v. ZV mit

$$P(Y_n = 1) = p, \ P(Y_n = -1) = 1 - p.$$

 $X_n := \sum_{k=1}^n Y_k$ ist dann der Gewinn (Verlust) von Spieler I nach n Runden. Sei

$$\tau := \inf\{n \in \mathbb{N} \mid X_n = N - n \text{ oder } X_n = -n\}$$

 $P(X_{\tau} = -n) = \text{Ruinwahrscheinlichkeit von Spieler I.}$

Sei $\mu = EY_1 = 2p-1$. Nach Beispiel 8.1 $\mu = 0 \Rightarrow (X_n)$ Martingal. $\mu \leq 0 \Rightarrow (X_n)$

Supermartingal. $\mu \geq 0 \Rightarrow (X_n)$ Submartingal.

Behauptung: $\exists a > 0, 0 < \gamma < 1$, sodass $P(\tau > j) \le a\gamma^j \ \forall j \in \mathbb{N}$.

Beweis: Sei $k \in \mathbb{N}$.

$$P(\tau > Nk) \leq P((Y_1, \dots, Y_n) \neq (1, \dots, 1),$$

$$(Y_{N+1}, \dots, Y_{2N}) \neq (1, \dots, 1), \dots, (Y_{(k-1)N+1}, \dots, Y_{kN}) \neq (1, \dots, 1))$$

$$\stackrel{(Y_n) \text{ unabh.}}{=} \prod_{v=0}^{k-1} P((Y_{vN+1}, \dots, Y_{(v+1)N}) \neq (1, \dots, 1))$$

$$= (1 - p^N)^k$$

Für j > N gilt:

$$P(\tau > j) \leq P(\tau > \lfloor \frac{j}{N} \rfloor N) \leq (1 - p^N)^{\lfloor \frac{j}{N} \rfloor} \leq \underbrace{\left((1 - p^N)^{\frac{1}{N}} \right)^j}_{=:\gamma^j} \underbrace{(1 - p^N)^{-1}}_{=:a}$$

Also folgt: $P(\tau < \infty) = 1, E\tau = \sum_{j=1}^{\infty} P(\tau \ge j) < \infty \text{ und } 1 = P(\tau < \infty) = P(X_{\tau} = N - n) + P(X_{\tau} = -n).$

Sei nun
$$M_n := \sum_{k=1}^n (Y_k - \underbrace{EY_k}_{=u}), n \in \mathbb{N}_0, M_0 = 0$$
 und $\mathfrak{F}_n := \sigma(Y_1, \dots, Y_n)$.

Dann ist $(M_n)_{n\in\mathbb{N}_0}$ ein (\mathfrak{F}_n) -Martingal. Das OST ist anwendbar, da (iii) erfüllt ist.

$$\Rightarrow 0 = EM_{\tau} = P(X_{\tau} = N - n)(N - n - E\tau\mu) + P(X_{\tau} = -n)(-n - E\tau\mu)$$
$$= P(X_{\tau} = N - n)(N - n) - P(X_{\tau} = -n)n - E\tau\mu.$$

Fall 1: $\mu = 0$ (d.h. $p = \frac{1}{2}$, faires Spiel)

$$\Rightarrow 0 = (1 - P(X_{\tau} = -n))(N - n) - P(X_{\tau} = -n)n \Rightarrow P(X_{\tau} = -n) = \frac{N - n}{N}$$

Fall 2: $p \neq \frac{1}{2}$

Sei $\Theta := \log(\frac{1-p}{p}) \neq 0$ und $L_0 := 1$, $L_n := \prod_{k=1}^n e^{\Theta Y_k} = e^{\Theta X_n}$. $(L_n)_{n \in \mathbb{N}}$ ist ein $(\mathfrak{F}_n)_{n \in \mathbb{N}}$ -Martingal, da

$$E\left[L_{n+1} \mid \mathfrak{F}_n\right] = \prod_{k=1}^n e^{\Theta Y_k} \cdot \underbrace{E\left[e^{\Theta Y_{n+1}}\right]}_{pe^{\Theta} + (1-p)e^{-\Theta} = 1} = L_n$$

Das Optional Stopping Theorem 8.6 ist anwendbar, da (iv) erfüllt $E|L_\tau|=Ee^{\Theta X_\tau}\leq e^{|\Theta|N}<\infty$ und

$$\int_{\{\tau > n\}} |L_n| dP \le e^{|\Theta|N} \underbrace{P(\tau > n)}_{\to 0 \ (n \to \infty)}$$

$$\implies 1 = EL_0 = EL_{\tau} = P(X_{\tau} = N - n)e^{\Theta(N-n)} + P(X_{\tau} = -n)e^{-\Theta n}$$

$$\implies 1 = (1 - P(X_{\tau} = -n)) \cdot (\frac{1-p}{p})^{N-n} + P(X_{\tau} = -n)(\frac{p}{1-p})^{n}$$

$$\implies P(X_{\tau} = -n) = \frac{\phi^N - \phi^n}{\phi^{N-1}}, \ \phi = \frac{1-p}{p}$$

Optimales Stoppen

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X = (X_n)_{n=1,\dots,N}$ ein stochastischer Prozess adaptiert an eine Filtration $(\mathfrak{F}_n)_{n=1,\dots,N}$. Es sei $E|X_k| < \infty \quad \forall k = 1,\dots,N$. Betrachte das Optimierungsproblem

$$v := \sup_{\tau \text{ ist Stoppzeit } \le N} \{EX_{\tau}\} = EX_{\tau_0}$$

v = maximaler Wert,

 τ_0 = optimale Stoppzeit (falls existent). Wegen

$$E|X_{\tau}| = \sum_{n=1}^{N} E(|X_n| \cdot \mathbf{1}_{\{\tau=n\}}) \le \sum_{n=1}^{N} E|X_n| < \infty$$

nach Voraussetzung ist $v < \infty$. Ist $(X_n)_{n=1,\dots,N}$ ein $(\mathfrak{F}_n)_{n=1,\dots,N}$ Supermartingal, so folgt mit Satz 8.6: $EX_1 \geq EX_{\tau} \quad \forall$ Stoppzeiten $\tau \leq N$. Also: $\tau_0 \equiv 1$ ist optimal (sofort aufhören).

Definition

Der Prozess $Z = (Z_n)_{n=1,...,N}$ mit

$$Z_N := X_N, \ Z_n := \max \{X_n, E[Z_{n+1} | \mathfrak{F}_n]\}, \ n = N - 1, \dots, 1$$

 $hei\beta t$ Snell-Einhüllende von X.

Satz 8.7 Mit den obigen Bezeichnungen gilt:

- a) Z ist ein $(\mathfrak{F}_n)_{n=1,\ldots,N}$ -Supermartingal mit $Z_n \geq X_n$ für $n=1,\ldots,N$.
- b) Z ist das kleinste (\mathfrak{F}_n) -Supermartingal, welches X dominiert, d.h. ist $(Y_n)_{n=1,\ldots,N}$ ein weiteres (\mathfrak{F}_n) -Supermartingal mit $Y_n \geq X_n$, $n=1,\ldots,N$ so gilt: $Y_n \geq Z_n$ für $n=1,\ldots,N$.

Beweis

- a) Aus der Definition: $Z_n \geq X_n \, \forall n, \, Z_n \geq E[Z_{n+1} \, | \, \mathfrak{F}_n], \, \text{also } (Z_n) \, \text{Supermartingal.}$
- b) Rückwärtsinduktion:

$$\begin{array}{ll} (n=N) \colon Y_N \geq X_N = Z_N \\ \text{Y Supermartingal} \\ (n \rightarrow n-1) \colon Y_{n-1} & \geq & E\left[Y_n \, \big| \, \mathfrak{F}_{n-1}\right] \overset{\text{I.H.}}{\geq} E\left[Z_n \, \big| \, \mathfrak{F}_{n-1}\right] \text{ und } Y_{n-1} \geq X_{n-1} \\ \Longrightarrow Y_{n-1} \geq \max\{X_{n-1}, E[Z_n \, \big| \, \mathfrak{F}_{n-1}]\} = Z_{n-1} \end{array}$$

Satz 8.8

Mit den obigen Bezeichnungen und $\tau_0 = \min\{n \in \{1, ..., N\} \mid X_n = Z_n\}$ gilt:

- a) τ_0 ist eine Stoppzeit.
- b) $(Z_n^{\tau_0})_{n=1,\ldots,N}$ ist ein $(\mathfrak{F}_n)_{n=1,\ldots,N}$ -Martingal.
- c) $EX_{\tau_0} = \sup_{\tau \ Stoppzeit} \{EX_{\tau}\}$

Beweis

a) Wegen $Z_N = X_N$ ist $\tau_0 \leq N$. Es gilt:

$$\{\tau_0 \le n\} = \bigcup_{i=1}^n \underbrace{\{Z_i = X_i\}}_{\in \mathfrak{F}_i} \in \mathfrak{F}_n$$

b) Es gilt:

$$\underbrace{Z_{n+1}^{\tau_0}}_{=Z_{(n+1)\wedge\tau_0}} - \underbrace{Z_n^{\tau_0}}_{=Z_{n\wedge\tau_0}} = \mathbf{1}_{\{\tau_0 \ge n+1\}} \left(Z_{n+1} - E\left[Z_{n+1} \mid \mathfrak{F}_n \right] \right) \ (*)$$

da

Fall 1:
$$\tau_0 \ge n+1$$

linke Seite = $Z_{n+1} - Z_n$,
rechte Seite = $Z_{n+1} - \underbrace{E[Z_{n+1} \mid \mathfrak{F}_n]}_{=Z_n}$, da $X_n < Z_n$ auf $\{\tau_0 \ge n+1\}$. (stimmt)

Fall 2: $\tau_0 \le n$ 0 = 0 (stimmt)

> Wende nun $E[\cdot | \mathfrak{F}_n]$ auf (*) an: Da $\{\tau_0 \ge n+1\} = \{\tau_0 \le n\}^C \in \mathfrak{F}_n$ folgt

$$E\left[Z_{n+1}^{\tau_0} - Z_n^{\tau_0} \mid \mathfrak{F}_n\right] = \mathbf{1}_{\{\tau_0 > n+1\}} E\left[Z_{n+1} - E\left[Z_{n+1} \mid \mathfrak{F}_n\right] \mid \mathfrak{F}_n\right] = 0$$

 $\implies (Z_n^{\tau_0})$ ist (\mathfrak{F}_n) -Martingal.

c) Wegen b) und Satz 8.6:

$$EZ_1 = EZ_1^{\tau_0} = EZ_N^{\tau_0} = EZ_{\tau_0} = EX_{\tau_0}$$

Für eine beliebige Stoppzeit τ gilt:

 $EZ_1 \geq EZ_{\tau}$, da Z Supermartingal. Und weiterhin:

$$EX_{\tau_0} = EZ_1 \ge EZ_1 \ge EZ_{\tau} \ge EX_{\tau} \implies \text{Beh.}$$

Beispiel 8.9 (Das Sekretärinnenproblem) N Bewerber(innen) um eine Stelle stellen sich nacheinander vor. Nach jedem Interview muss entschieden werden, ob die Person die Stelle bekommt.

Annahme: Die Bewerber lassen sie linear anordnen und erscheinen in beliebiger Reihenfolge. (N! mögliche Reihenfolgen)

Welche Strategie maximiert die Wahrscheinlichkeit, dass die beste Person die Stelle bekommt?

- A_n = absoluter Rang des *n*-ten Kandianten unter allen N.
- R_n = dessen relativer Rang unter den ersten N. $R_n = \{1 \le m \le n \mid A_m \le A_n\}$.

Es gibt eine Bijektion zwischen den A-Werten und den R-Werten. Somit gilt $\forall r_1, \ldots, r_N, 1 \leq r_i \leq i, 1 \leq i \leq N$:

$$P(R_1 = r_1, \dots, R_N = r_N) = \frac{1}{N!}$$

Bestimme Randverteilungen:

$$P(R_n = l) = \frac{1}{n}$$
 für $l = 1, ..., n \ \forall n \in \{1, ..., N\}$

und R_1, \ldots, R_N unabhängig. Sei nun

$$\overline{X}_n := \begin{cases} 1, & A_n = 1 \\ 0, & \text{sonst} \end{cases}, \ \mathfrak{F}_n = \sigma(R_1, \dots, R_n)$$

und $X_n = E[\overline{X}_n | \mathfrak{F}_n]$. (X_n) ist (\mathfrak{F}_n) -adaptiert. $P(\overline{X}_{\tau} = 1) \to \max$.

$$P(\overline{X}_{\tau} = 1) = \sum_{n=1}^{N} P(\overline{X}_{n} = 1, \ \tau = n) = \sum_{n=1}^{N} E \mathbf{1}_{[\tau = n, \ \overline{X}_{n} = 1]}$$

$$= \sum_{n=1}^{N} \int_{\{\tau = n\}} \overline{X}_{n} dP = \sum_{n=1}^{N} \int_{\{\tau = n\}} \underbrace{E[\overline{X}_{n} | \mathfrak{F}_{n}]}_{=X_{n}} dP$$

$$= EX_{\tau}$$

Also maximiere EX_{τ} mit Satz 8.8.

$$P(R_1 = r_1, \dots, R_{n-1} = r_{n-1}, A_n = 1) = P(R_1 = r_1, \dots, R_{n-1} = r_{n-1}, R_n = 1, R_{n+1} > 1, \dots, R_N > 1)$$

$$= \frac{1}{N!} \cdot 1 \cdot \dots \cdot 1 \cdot n \cdot (n+1) \cdot \dots \cdot (N-1) = \frac{n}{N} \cdot \frac{1}{n!}$$

$$\Rightarrow P(A_n = 1 \mid R_1 = r_1, \dots, R_{n-1} = r_{n-1}, R_n = 1) = \frac{P(R_1 = r_1, \dots, R_{n-1} = r_{n-1}, R_n = 1, A_n = 1)}{P(R_1 = r_1, \dots, R_{n-1} = r_{n-1}, R_n = 1)}$$

$$= \frac{\frac{n}{N} \cdot \frac{1}{n!}}{\frac{1}{n!}} = \frac{n}{N}$$

$$\Rightarrow X_n = E[\mathbf{1}_{\{1\}}(A_n)|\mathfrak{F}_n] = \begin{cases} \frac{n}{N}, & \text{falls } R_n = 1\\ 0, & \text{sonst} \end{cases} (*)$$

Behauptung: $\exists (c_n)_{n=1,\dots,N} \subset \mathbb{R}, c_n \downarrow, c_N = \frac{1}{N} \text{ und } E[Z_n | \mathfrak{F}_{n-1}] \equiv c_n \text{ für } n = 1,\dots,N, \text{ wobei } Z \text{ die Snell-Einhüllende von } X \text{ ist.}$

Beweis: Rüchwärtsinduktion:

n = N:

$$\begin{split} E[Z_N|\mathfrak{F}_{N-1}] &= & E[X_N|\mathfrak{F}_{N-1}] \stackrel{A_N=R_N}{=} E[\mathbf{1}_{\{1\}}(R_N)|\mathfrak{F}_{N-1}] \\ &\stackrel{R_N,\mathfrak{F}_N \text{ unabh.}}{=} & P(R_N=1) = \frac{1}{N} = c_N. \end{split}$$

 $n+1 \leadsto n$:

$$E[Z_{n}|\mathfrak{F}_{n-1}] = E[\max\{X_{n} E[Z_{n+1}|\mathfrak{F}_{n}]\}|\mathfrak{F}_{n-1}]$$

$$\stackrel{(*)}{=} E[\max\{\frac{n}{N} \cdot \mathbf{1}_{\{1\}}(R_{n}), c_{n+1}\}|\mathfrak{F}_{n-1}]$$

$$= E[\mathbf{1}_{\{1\}}(R_{n}) \cdot \max\{\frac{n}{N}, c_{n+1}\} + (1 - \mathbf{1}_{\{1\}}(R_{n}))c_{n+1}|\mathfrak{F}_{n-1}]$$

$$\stackrel{R_{n},\mathfrak{F}_{n-1}}{=} \text{unabh.} \quad P(R_{n} = 1) \cdot \max\{\frac{n}{N}, c_{n+1}\} + (1 - P(R_{n} = 1)) \cdot c_{n+1}$$

$$= \frac{1}{n} \max\{\frac{n}{N}, c_{n+1}\} + (1 - \frac{1}{n})c_{n+1}$$

$$\Rightarrow c_{n} = c_{n+1} + \max\{\frac{1}{N}, \frac{c_{n+1}}{n}\} - \frac{c_{n+1}}{n} \Rightarrow c_{n} \geq c_{n+1}$$

 $\tau^* := \inf\{n \mid Z_n = X_n\}$ Stoppregel nach Satz 8.8: $\tau^* = \min\{n \mid X_n = Z_n\}.$

- gestoppt wird vor N nur, wenn $R_n = 1$.
- die Werte $X_n \neq 0$ sind wachsend.
- die Werte $E[Z_{n+1}|\mathfrak{F}_n]=c_{n+1}$ fallend.

$$\tau^* = \min\{1 \le n \le N - 1 \mid R_n = 1, \frac{n}{N} \ge c_{n+1}\} \land N$$
$$= \min\{n \ge k_n \mid R_n = 1\} \land N.$$

Wir bestimmen jetzt noch k_N .

Sei $\tau_k := \inf\{n \geq k \mid R_n = 1\} \wedge N$. Bestimme EX_{τ_k} . k_N ist dann der k-Wert, bei dem EX_{τ_k} maximal ist. Es gilt

$$EX_{\tau_k} = \sum_{l=k}^{N} E[X_l \cdot 1_{\{l\}}(\tau_k)]$$

$$= \sum_{l=k}^{N} \frac{l}{N} \underbrace{P(R_m > 1 \text{ für } m = k, \dots, l-1, R_l = 1)}_{=P(\tau_k = l)}$$

$$= \sum_{l=k}^{N} \frac{l}{N} \underbrace{\left(\prod_{m=k}^{l-1} \frac{m-1}{m}\right)}_{=P(R_m > 1)} \cdot \underbrace{\frac{1}{l}}_{=P(R_l = 1)}$$
Teleskop. Prod.
$$\underbrace{\frac{k-1}{N} \sum_{l=k}^{N} \frac{1}{l-1}}_{=R_l = l}$$

 $\Phi(k) := \frac{k-1}{N} \sum_{l=k}^{N} \frac{1}{l-1} \text{ wird maximal in } k_N := \inf\{k \mid \frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{N-1} \leq 1\}.$ Beachte: $\lim_{N \to \infty} \frac{k_N}{=} \frac{1}{e}$.

Bei einem großen Bewerberkreis wird man etwa 37 Prozent der Bewerber passieren lassen und dann den ersten nehmen, der besser als alle vorangegangenen ist.

9 Konvergenzsätze für Martingale

Im Folgenden sei (Ω, \mathcal{A}, P) ein W'Raum, $(\mathfrak{F}_n)_{n\in\mathbb{N}}$ eine Filtration und $\mathfrak{F}_{\infty} := \sigma(\cup_{n\in\mathbb{N}}\mathfrak{F}_n)$.

Definition 9.1 Sei X_1, \ldots, X_n eine Folge von ZV und $-\infty < a < b < \infty$. $U_n[a,b]$ sei die **Anzahl der aufsteigenden Überschreitungen** des Intervalls [a,b] durch X_1, \ldots, X_n also

$$U_n[a,b] = \max\{k \leq \lfloor \frac{n}{2} \rfloor \mid \exists \text{ Indizes } 1 \leq i_1 < \dots < i_{2k} \leq n \text{ mit } X_{i_{2j-1}} \leq a, b \leq X_{i_{2j}} \text{ für } j = 1,\dots,k\}$$

Bemerkung 9.1 Wegen

$$\{U_n[a,b] \geq k\} = \bigcup_{1 \leq i_1 < \dots < i_{2k} \leq n} \bigcap_{j=1}^k \{X_{i_{2j-1}} \leq a\} \cap \{X_{i_{2j}} \geq b\} \in \mathfrak{F}_n$$

ist $U_n[a,b]$ eine ZV.

Lemma 9.1 Sei $(X_n)_{n\in\mathbb{N}}$ ein Supermartingal. Dann gilt:

$$EU_n[a,b] \le \frac{1}{b-a}E(X_n-a)^-$$

Beweis

Sei $p := \lfloor \frac{n}{2} \rfloor + 1$, $\tau_0 \equiv 1$ und für $k = 1, \dots, p$: $\tau_{2k-1} := \min\{j \geq \tau_{2k-2} \mid X_j \leq a\} \land n$ $\tau_{2k} := \min\{j \geq \tau_{2k-1} \mid X_j \geq b\} \land n$ Die (τ_k) sind Stoppzeiten mit $1 \leq \tau_1 \leq \tau_2 \leq \dots \leq \tau_{2p} = n$ und falls $\tau_{2k-1} < n$, ist $\tau_{2k-1} < \tau_{2k}$. Sei $k_0 := U_n[a, b]$, d.h. $X_{\tau_{2k}} - X_{\tau_{2k-1}} \geq b - a$ für $k = 1, \dots, k_0$ $X_{\tau_{2k_0+2}} - X_{\tau_{2k_0+1}} \neq 0 \implies X_{\tau_{2k_0+1}} \leq a$, $X_{\tau_{2k_0+2}} = X_n$ $\implies X_{\tau_{2k_0+2}} - X_{\tau_{2k_0+1}} \geq X_n - a \geq \min\{X_n - a, 0\} = -(X_n - a)^ \implies \sum_{k=1}^{p} (X_{\tau_{2k}} - X_{\tau_{2k-1}}) \geq (b - a) \cdot U_n[a, b] - (X_n - a)^-$ Wir zeigen jetzt: $E(X_{\tau_{2k}} - X_{\tau_{2k-1}}) \leq 0$. Sei $c_j := \mathbf{1}_{\{\tau_{2k-1} < j \leq \tau_{2k}\}}$. $(c_j)_{j \geq 2}$ ist vorhersehbar. $\{c_j = 1\} = \{\tau_{2k-1} \leq j - 1\} \cap \{\tau_{2k} \leq j - 1\}^C \in \mathfrak{F}_{j-1}$ Sei $Y_n = X_1 + \sum_{j=2}^n c_j(X_j - X_{j-1}), n \in \mathbb{N}$; $Y_1 := X_1$. $\xrightarrow{\text{Satz 8.4}}$ (Y_n) ist ein Supermartingal.

$$\implies EY_n = E[X_1 + \sum_{j=1}^n c_j(X_j - X_{j-1})]$$

$$= EX_1 + \underbrace{E[X_{\tau_{2k}} - X_{\tau_{2k-1}}]}_{\leq 0}$$

$$< EY_1 = EX_1$$

 \implies Beh.

Satz 9.1 (Vorwärtskonvergenzsatz von Doob)

Sei $(X_n)_{n\in\mathbb{N}}$ ein $(\mathfrak{F}_n)_{n\in\mathbb{N}}$ -Supermartingal mit der Eigenschaft $\sup_{n\in\mathbb{N}}\{E|X_n|\}<\infty$. Dann existiert eine $\mathfrak{F}_{\infty}^{-1}$ -messbare Zufallsvariable X_{∞} mit $E|X_{\infty}| < \infty$ und $\lim_{n \to \infty} X_n =$ $X_{\infty} P - f.s.$

Beweis

Sei
$$N := \{\omega \in \Omega \mid \lim \inf_{n \to \infty} \{X_n(\omega)\} < \lim \sup_{n \to \infty} \{X_n(\omega)\} \}$$
 und $U_{\infty}[a,b] := \lim_{n \to \infty} \{U_n[a,b]\}$ (existiert, da $U_n[a,b]$ wachsend) $\Rightarrow N = \cup_{a,b \in \mathbb{Q}, a < b} \{\omega \in \Omega \mid U_{\infty}[a,b](\omega) = \infty\}$ $\xrightarrow{\text{Lemma } 9.1} (b-a)EU_n[a,b] \le E(X_n-a)^- \le |a|+E|X_n| \quad \forall n \in \mathbb{N}$ Mit der Voraussetzung und monotoner Konvergenz: $EU_{\infty}[a,b] < \infty$. $\Rightarrow P(U_{\infty}[a,b] = \infty) = 0 \quad \Rightarrow P(N) = 0$, da N abzählbare Vereinigung von P -Nullmengen. Außerdem: $N \in \mathfrak{F}_{\infty}$. Sei $\tilde{X}_{\infty}(\omega) := \begin{cases} \lim_{n \to \infty} \{X_n(\omega)\} & \omega \in N^C \text{ (evtl. } \tilde{X}_{\infty}(\omega) = \infty) \\ 0 & \omega \in N \end{cases}$ $\Rightarrow E \left| \tilde{X}_{\infty} \right| \quad = \quad E \left[\liminf_{n \to \infty} \{|X_n|\} \right]$ Lem. von Fatou $\leq \sup_{n \to \infty} \{E|X_n|\}$ $\leq \sup_{n \to \infty} \{E|X_n|\}$

Sei
$$\tilde{N} := \{ \omega \in \Omega \mid \tilde{X}_{\infty} \in \{-\infty, \infty\} \} \implies P(\tilde{n}) = 0$$
 $folgtX_{\infty} := \tilde{X}_{\infty} \cdot \mathbf{1}_{\tilde{N}^{C}}$ erfüllt die Bedingung.

Bemerkung

- (i) $(X_n)_{n\in\mathbb{N}}$ mit der Eigenschaft $\sup_{n\in\mathbb{N}}\{E|X_n|\}<\infty$ heißt L^1 -beschränkt.
- (ii) Bei Supermartingalen folgt die L^1 -Beschränktheit aus $\sup_{n\in\mathbb{N}}\{EX_n^-\}<\infty$, also z.B. falls $X_n \geq 0$.

 $^{{}^{1}\}mathfrak{F}_{\infty} = \sigma(\cup_{n \in \mathbb{N}}\mathfrak{F}_{n})$

Beispiel 9.1 (Verzweigungsprozesse)

Es sei $\{Y_{nk} \mid n, k \in \mathbb{N}\}$ eine Familie von unabhängigen und identisch verteilten \mathbb{N}_0 wertigen Zufallsvariablen.

$$P_i := P(Y_{nk} = j) \quad \forall j \in \mathbb{N}_0$$

Sei (Z_n) definiert durch

$$Z_1 := 1, \ Z_{n+1} := \sum_{k=1}^{Z_n} Y_{nk} \quad \forall n \in \mathbb{N}_0 \text{ und } \mu := \sum_{k=1}^{\infty} k p_k < \infty$$
$$\mathfrak{F}_n = \sigma(\{Y_{mk} \mid k \in \mathbb{N}, \ m \le n-1\})$$

Es gilt:

$$E[Z_{n+1} | \mathfrak{F}_n] = E\left[\sum_{k=1}^{Z_n} Y_{nk} | \mathfrak{F}_n\right]$$

$$= E\left[\sum_{l=0}^{\infty} \left(\sum_{k=1}^{l} Y_{nk}\right) \cdot \mathbf{1}_{\{Z_n=l\}} | \mathfrak{F}_n\right]$$

$$= \sum_{l=0}^{\infty} E\left[\sum_{k=1}^{l} Y_{nk} | \mathfrak{F}_n\right] \cdot \mathbf{1}_{\{Z_n=l\}}$$

$$= \sum_{l=0}^{\infty} l \cdot \mu \cdot \mathbf{1}_{\{Z_n=l\}} = \mu \cdot Z_n$$

Sei $X_n:=\frac{Z_n}{\mu^n} \Longrightarrow (X_k)_{k\in\mathbb{N}}$ ist ein $(\mathfrak{F}_n)_{n\in\mathbb{N}}$ -Martingal. Insbesondere gilt:

$$EZ_n = \mu^n \cdot EX_n = \mu^n EX_1 = \mu^{n-1} EZ_1 = \mu^{n-1}$$
 (*)

 $(X_n)_{n\in\mathbb{N}}$ ist L^1 -beschränkt, da $E|X_n|=EX_n=\frac{1}{\mu} \quad \forall n\in\mathbb{N}.$

 $\xrightarrow{\text{Satz 9.1}} \exists X_{\infty} \text{ mit } X_n \to X_{\infty} P - \text{f.s.} .$

 $\frac{\text{Falls } \mu < 1:}{\text{Falls } \mu = 1:} \stackrel{\binom{*}{*}}{\Longrightarrow} P(Z_n \ge \epsilon) \to 0 \ (n \to \infty) \implies X_\infty \equiv 0$ $\frac{\text{Falls } \mu = 1:}{X_n \text{ ganzzahlig}} \implies \text{Folge irgendwann konstant. Wenn } P_1 \ne 1$

Falls $\mu > 1$: X_{∞} ist nicht degeneriert. $P(X_{\infty} = 0)$ ist Lösung von g(z) = z, wobei g $\overline{\text{erzeugende}}$ Funktion von Y ist.

Stichwortverzeichnis

111 1 1 1 1 00	F1 . W . 1 94
L^1 -beschränkt, 86 L^p -Ungleichung, 72	Erlang-Verteilung, 34
μ-Dichte, 19	Erwartungswert bedingt, 61, 66
μ-Dichte, 19 μ-Integral, 7, 10, 11	Version des bedingten, 62
μ -integral, 7, 10, 11 μ -Nullmenge, 18	9 ,
•	Erwartungswert (Zufallsvektor), 57
μ -fast überall, 18 μ -integrierbar	Faktorisierungssatz, 65
p-fach, 22	Faltung, 34
μ -stetig, 19	fast überall, 18
μ -stetig, 19 σ -Algebra	Filtration, 71
der τ -Vergangenheit, 74	,
9 9 ,	Gamma-Verteilung, 34
Produkt-, 25 d-dimensionale Normalverteilung, 58	gemeinsame Verteilung, 31
μ -differentially and μ -integrier bar, 22	gestoppter Prozess, 75
p -racii μ -integrier bar, 22	Gumbelverteilung, 55
abzählendes Maß, 6	
adaptiert, 71	Höldersche Ungleichung, 22
algebraische Induktion, 18	Jensensche Ungleichung, 21
bedingte Dichte, 67	Kern, 66
bedingter Erwartungswert, 61, 62, 66	Kern, 66 Konvergenz
beschränkt	in Verteilung, 45
L^1 -, 86	schwache, 45
L^{p} -, 73	konvex, 21
Bildmaß, 16	Koppelung, 66
Borel-Cantelli Lemma, 37	Kovarianzmatrix, 57
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kovarianzmatrix, 57
charakteristische Funktion, 41	Lebesgue-Maß, 6
charakteristische Funktion (Zufallsvek-	Lebesgue-Stieltjes-Maß, 6
tor), 57	Lemma
Continuous Mapping Theorem, 46	Borel-Cantelli, 37
Darstellungssatz von Skorohod, 45	von Fatou, 15
Dirac-Maß, 5	Lindeberg-Bedingung, 49
Eliab, o	0 0 0/
Eindeutigkeitssatz für Maße, 6	Maß
Einpunktmaß, 5	Produkt-, 27
Eintrittszeit, 74	Martingal, 71
Elementar funktion, 7	Sub-, 71

90 Stichwortverzeichnis

Super-, 71 Maß, 5 σ -endlich, 5 endlich, 5	straff, 47 Submartingal, 71 Submartingal-Ungleichung, 72 Supermartingal, 71
Lebesgue-Stieltjes, 6 Maß mit Dichte, 19 maßdefinierende Funktion, 6 Maßraum, 5	Theorem Optional Stopping-, 77 Transformationssatz, 17
Maßtransport, 16 Minkowskische Ungleichung, 22 Normalverteilung d-dimensionale, 58 Nullmenge, 18 Optional Stopping Threorem, 77 Ordnungsstatistik, 35	Übergangskern, 66 unabhängig stochastisch, 31 Ungleichung L^p -, 72 Höldersche, 22 Jensensche, 21 Minkowskische, 22
OST, 77	Submartingal-, 72
Produkt-σ-Algebra, 25 Produktmaß, 27 Projektion, 25 Prozess gestoppter, 75 quasi-integrierbar, 11 Randdichte, 34	Verteilung Erlang-, 34 Gamma-, 34 gemeinsame, 31 Gumbel, 55 Verteilungskonvergenz, 57 Wahrscheinlichkeitsmaß
Satz Faktorisierungs-, 65 Integration bezüglich des Bildmaßes, 17 Transformations-, 17, 33 Transformationssatz, 32 von der majorisierten Konvergenz, 15 von Doob, 72 von Helly, 47 von Lebesgue, 15 von Radon-Nikodym, 20 schwache Konvergenz, 45 Snell-Einhüllende, 80 Stetigkeitssatz für charakteristische Funktionen, 48 stochastisch unabhängig, 31 stochastischer Prozess, 71 Stoppzeit, 74	straffes, 47 Zentraler Grenzwertsatz von Lindeberg- Lévy, 49 Zufallsgröße, 7 Zufallsvariable, 7 Zylindermengen, 25