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Kapitel 1

(zalois theory

§ 1 Algebraic field extensions

Notations 1.1 If k, L are fields and K < L, L/k is called a field extension. The dimension
[L : k] := dimy L of L considered as a k-vector space, is called the degree of the field extension
of L over k. A field extension L/k is called finite, if [L : k] < co. The polynomial ring over k is
defined as

n=0,a;€k Vie{0,..,n},a, # 0} v {0}.

|:= {f = Z%’Xi
i=0

Reminder 1.2 Let L/k a field extension, o € L, f € k[ X].
(i) f(a) is well defined.
(il) ¢o : k[X] — L, f — f(a) is a homomorphism.
iii) 1m( ) k[a] is the smallest subring of L containing k and «.
(iv) ker(¢q) = {f € kla] | f(a) = 0} < k[X] is a prime ideal.
v)
)

(vi) If fo # 0 and the leading coefficient of f, is 1, f, is called the minimal polynomial of «,

er(géa) is a principle 1deal

ie. fo(a) =0 and f, is the polynomial of smallest degree with this property. In this case,
fa is irreducible and ker(¢s) = (fo) is a maximal ideal.
(vii) Then Lq := k[X] /ker(¢q) = k[X] /(f,) is a field.
(viii) We have k[o] = im(¢a) = k[X] /ker(¢q) = La, if fa # 0. Moreover k[a] = k(a), where
k(cv) is the smallest field containing k and a. In particular, 1 € k[a].
(ix) The degree of the field extension k[a]/k is [k[a] : k] = deg(fa).

proof.  (ii) For f, f1, fo € k[X], A € k we have
(f1 + f2)(@) = fi(a) + f2(e@)and(Af)(a) = A()

(iii) Clear.
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(iv) Let f,g € k[X] such that f - g, € ker(¢y): Then

0=(f 9)(a) = fla) g(a)

and since L has no zero divisors, f(a) = 0 or g(a) = 0 and hence f € ker(¢q) or g € ker(¢q)
(v) Remember that the polynomial ring is euclidean. Take f, € ker(¢,,) of minimal degree. We

will show, that ker(¢q) is generated by fq. Let g € ker(¢,) arbitrary and write
g=q- foa+r with ¢,7 € k[ X], deg(r) < deg(fo) or r = 0.

Since r = q - fo € ker(¢,) and the choice of f,, deg(r) « deg(fa), hence r =0 = g € (fa).

(vi) If fo = g - h, either g(a) = 0 or h(a) = 0. As above, this implies g € k or h € k*, i.e. f or
g is irreducible. Now assume, there is and ideal I < k[X] satisfying (fo) & I < k[K]. Let
g € I\(fa), such that (¢g) = I. Such a g exists by proof of (v). Then f, = g-h, h € k[X].
This implies, that either g or h is a constant polynomial, hence a unit. In the first case,
I = k[X] and in the second one I = (f,), which implies the claim.

(vii) We show the more general argument: If R is a ring, m< R a maximal ideal, then R /m is a
field. Let @ € R /m for some a € R, @ # 0. Let I := (m, a) the smallest ideal in R containing
m and a. Since a # 0, hence a ¢ m we have m < I and since m is a maximal ideal, I = R.

Hence 1 € I, so we can write 1 = x + ab for some x € m and b € R. Then we get

1=x+ab=7+ab=ab,

hence @ is invertible in R /m.
(viii) Let

n
Ja = Z a; X"
=0

Note, that a, = 1 and ag # 0, since f, is irreducible. We get
n

= 0 =fa(a):Zaiai=a0+a1a+~-+ana”
i=0
_ n—2 n—1
- ag = —a-(a1+a2a+~~+an_2a + « )
a a Gn— 1
— 1 =—a-<1+2a—|—--~+“a”_2+om—1>
ap  ag aop ao
g l = _E_@ _ _an_Q n—2 1 n—1
« ag aq ag a
Hence 1 € k[X] and k[X] is a field.
(ix) The family {1,c,...,a" !} forms a basis of k[a] as a k-vector space. O

Example 1.3 Let k = Q, L = C, a = 1 + i, 8 = /2. Then the minimal polynomials of a and

B are
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fo=(X=17%+1, fz=X2>-2.

Proposition 1.4 (Kronecker) Let k be a field, f € k[X], deg(f) = 1.
Then there exists a finite field extension L/k and o € L, such that f(a) = 0.

proof. W.l.o.g. we may assume, that f is irreducible, since f = g-h =0= g =0o0r h = 0. Then
by 1.2 (f) = {f g | g € k[X]} is a maximal ideal and L :=k /(f) is a field.

Clearly k is a subfield of L, since (f) does not contain any constant polynomial, i.e., if
s KX] — KX /()

denotes the residue map, we have ker(mw) n k = {0}, hence 7|j is injective. Write

n
f = Z al-Xi.
i=0

Then we have

n

f@(X) =D am(X) =) w(a)w(X) =7 (2 aiXZ) =7(f) =0,
0 =0 i=0

1=

hence v := m(X) is a zero of f in L. Moreover L/k is finite with degree [L : k] = deg(f) = n,

since {1,q,...,a" 1} is basis of L as a k-vector space. For the independence write
n—1
dDidiad =0, Nek
=0

Assume, there is 0 < j < n — 1 with A; # 0. Then the polynomial

n—1 A
g= Z NiX*
=0

satisfies g(a) = 0 with deg(g) < deg(f), which is not possible by irreducibility of f. It remains
to show, that L is generated by the powers of a. We have o™ + a,_1a™ ' + - + aja 4+ ag = 0,

hence we write

n 1

a = — (an,la”_ + - F+aa+ ao) e(1,.. .,a”_l).
By induction on n, we get o* € (1,...,a" 1) for all k = n. O

Example 1.5 Let £k =Q, f = X™ — a for some a € Q. For now we assume that f is irreducible

(we may be able to prove this later). Then

and the degree of the extension is equal to n.
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Definition 1.6 Let L/k a field extension, a € L.
(i) « is called algebraic over k, if there exists f € X[X]\{0}, such that f(«) = 0.
(ii) Otherwise « is called transcendental.

(iii) L/k is called an algebraic field extension, if every a € L is algebraic over k.

Proposition 1.7 Every finite field extension L/k is algebraic.

proof. Let a € L, n :=[L : k] the degree of L/k. Then 1, «,...a™ are linearly dependant over k,

i.e. there exist Ao, ..., A\, € k, Aj # 0 for at least one 0 < j < n, such that

i=0
Hence the polynomial
f= i NXE#£0
i=0
satifies f(a) = 0, thus « is algebraic over k. Since « was arbitrary, L/k is algebraic. ]

Proposition 1.8 Let L/k a field extension, o, 3 € L.
(i) If o, B are algebraic over k, then o+ B, o — 3, - B are also algebraic over k.

(ii) If a # 0 is algebraic over k, then é is also algebraic over k.

(iii) ki := {a € L|a is algebraic over k} < L is a subfield of L.

proof. (i) Since a € L is algebraic over k = k[a] = k(«) is a finite field extension of k. Since
B is algebraic over k = [ is algebraic over k[a], hence (k[a])[5]/k[a] is a finite field

extension. Further, we have
k < kla] < (k[a]) [B] = kla, B].

Thus k[«, 5]/k is algebraic with Proposition 1.5. This implies the claim, as a + 8, a — 3,
a- pekla,B].

(i) If o # 0, X is algebraic over k with part (i).

(iii) Follows from (i) and (ii). ]

Definition + proposition 1.9 Let k be a field, f € k[ X], deg(f) = n.
(i) A field extension L/k is called a splitting field of f, if L is the smallest field in which f
decomposes into linear factors.
(ii) A splitting field L(f) exists.
(iii) The field extension L(f)/k is algebraic over k.
(iv) For the degree we have [L(f) : k] < nl.
proof.
(ii) Do this by induction on n.
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n=1 Clear.
n>1 Write f = f; - - - f, with irreducible polynomials f; € k[X]. Then f splits if and only
every f; splits. Hence we may assume that f is irreducible
Consider Ly :=k /(f). Then f has a zero in L1; say . Then we have L; = k[a]. Now
we can write f = (X — «a) - g for some g € k[X] with deg(g) = n — 1. By induction
hypothesis, there exists a splitting field L(g) for g. Then f splits over L(g)[«].
(iii) Follows by part (iv) and Proposition 1.5
(iv) Do this again by induction.
n=1 Clear.
n>1 In the notation of part (ii) we have [k[«] : k] = deg(f) = n. By the multiplication

formula for the degree and induction hypothesis we have

Definition + proposition 1.10 Let k be a field.

(i) k is called algebraically closed, if every f € k[X] splits over k.
(ii) The following statements are equivalent:
(1) k is algebraically closed
(2) Every nonconstant polynomial f € k[X] has a zero in k.
(3) There is no proper algebraic field extension of k.
(4) If f e k[X] is irreducible, then deg(f) = 1.

proof. (1) = (2)’ Let f € k[X] be a non-constant polynomial of degree n. Then f splits over k,

i.e. we have a presentation

f= ﬁ(X = Ai)
1=0

with \; € k for 1 < i < n. Every ); is a zero. Since n = 1, we find a zero for any nonconstant
polynomial.

'(2) = (3)" Assume L/k is algebraic, « € L. Let f, be the minimal polynomial of . By assump-
tion, f, has a zero in k. Since f, is irreducible, we must have f, = X — «, hence «a € k,
since f € k[ X].

'(3) = (4)" Let f € k[X] irreducible. Then L := k[X] /(f) is an algebraic field extension. By
(3), L =k, hence 1 = [L : k] = deg(f).

"(4) = (1)’ For f € k[X] write f = f1 - - f, with irreducible polynomials f; for 1 <i < r.
With (4), deg(f;) = 1 for any 4, hence f splits. ]

Lemma 1.11 Let k be a field. Then there exists an algebraic field extension k' /k, such that every
f € k[X] has a zero in k'
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proof. For every irreducible polynomial f € k[X] introduce a symbol X; and consider
= k[{X/|f € k[X] irreducible}] 2 k.

Monomials in R look like

n
= A XPXE X

with A € k, n; € N. Let I < R be the ideal generated by the f(Xy), f € k[X] irreducible. The
following claims prove the lemma:

Claim (a) I # R

Claim (b) There exists a maximal ideal m < R containing /.

Claim (c) ¥ = R /m

To finish the proof, it remains to show the claims.

(a) Assume I = R. Then 1€ I, i.e.

k
1= Z gfifi (sz)
=1

for suitable gf, € R. Let L/k be a field extension in which all f; have a zero ;. Define a

ring homomorphism by
Qg f = fl

0, otherwise

m:R— L, Xy

Then we obtain

k k k
l=n(l)=m (Z as. fi (sz ) Z gfl Vi (7 Xf1 277 g )i (o) =0,
=1

i=1 i=1

hence our assumption was false and we have I # R.

(b) Let S be the set of all proper ideals of R containing I. By claim 2, I € S. Let now
S1 €Sy, C S3¢

be elements of S. More generally let N be a totally ordered subset of S and

— ﬂ J
JeN
Then S € S, hence S is nonempty. By Zorn’s Lemma we know that & contains a maximal
element m # R. Then m is maximal ideal of R, since an ideal J < R satisfyingm < J S R
is contained in S, which is a contradiction considering the choice of m.
(c) Clearly k£’ is a field extension of k. Let f € k[X] be irreducible and

7w : R —> k /m denote the residue map. Then

f(Xy)elcm
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i.e. we have

T(Xf) =0

and thus f (m(Xy)) = 0. Hence 7(Xy) is algebraic over k.
Since k' is generated by the 7(Xy), k’/k is algebraic, which finishes the proof. O

Theorem 1.12 Let k be a field. Then there exists an algebraic field extension k/k such that k

is algebraically closed. k is called the algebraic closure of k.

proof. By Lemma 1.9 there is an algebraic field extension k’/k, such that every f € k[X] has a

zero in k’. Then let
ko =k, ki=ky ke=K, kix1=k for i >1

Clearly k; is algebraic over k for all ¢ € Ny and k; € k;11. Define

k= Ukl

1€Np

Then k/k is an algebraic field extension. For f € k[X] we find i € Ny with f € k;[X], hence f
has a zero in k;. With proposition 1.8, k is algebraically closed. O

§ 2 Simple field extensions
Definition 2.1 A field extension L/k is called simple, if there exists some a € L such that
L = k[a].

Example 2.2 Let f € k[X] be irreducible, L := k[X] /(f). Then L = k[a] where a = 7(X) =
X and 7 : k[X] — L denotes the residue map. Conversely, if L/k is simple and algebraic, then
L = k[a] for some algebraic aw € L. Let f € k[X] be the minimal polynomial of o over k, then

Proposition 2.3 Let L be a field. Then any finite subgroup G of the multiplicative group L™ is

cyclic.

proof. Let a € G be an element of maximal order, n := ord(«). Define
G :={B e G:ord(B)|n}
We first show G’ = G and then G’ = («). Let 8 € G, m := ord(8). Then

ord(af) = lem(m,n) < n
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by the property of n. Thus m|n and 8 € G’ and hence G < G'. Since G’ < G by definition, we
have G’ = G. Let now v € G'. We have 4" = 1, hence 7 is zero of

F=Xx"-1
f has at most n zeros, but since |(a)| = n, we have (a) = G’ which finishes the proof. ]

Corollary 2.4 Let k be a finite field. Then every finite field extension L/k is simple.

proof. We have |L| = |k|lZ*] and thus L is also finite. With proposition 2.2 there exists some
a € L such that L™ = L\{0} = («), hence L = k[«], which proves the claim. ]

Remark 2.5 Let L/k be a finite field extension, f € k[X] and o € L a zero of f. Let k be an
algebraic closure of k and o : L —> k a homomorphism of field such that ol = idy. Then o(c)

s a zero of f.
proof. Write

n
f = Z CLZ'Xi
1=0

with coefficients a; € k, hence we have o(a;) = a; for 0 < i < n. We obtain

flo(a)) = Y ai(o(a)) = Y o(ai) (o()' =0 (2 aio/) =0 (f(@)) = 0(0) =0,
=0 ) 1=0

=0

which finishes the proof. L]

Theorem 2.6 Let L/k be a finite field extension of degree n := [L : k] and k an algebraic closure
of k. If there exist n different field homomorphisms o1, .. .0y, : k —> L such that o;|x, = idy, then
L/k is simple.

proof. Let L = k[aq, ..., a,] for some r = 1 and «; € L. Prove the statement by induction on r.
r=1 L = k[aq], hence L is simple.
r>1 Let now L' = k[a1,...a,—1]. By hypothesis, L'/k is simple, say L = k[(]. Then we have

L =klay,...ap] = L'[a,] = Kk[a, 8]
with « := «,. For X\ € k consider
vi=7\=a+ AS.
By remark 2.4 it suffices to show

gi(y) # oj(y) for ¢ # j.
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Assume there are i # j such that o;(v) = 0;(7y). Then
JZ‘(Oé) + /\UZ(B) = O’j(O&) + /\Uj(ﬁ),

SO we get

ai(@) — oj(@) + A(oi(B) — 0;(5)) = 0.

Consider the polynomial

g:== ][ oaila)=oj(a) + X - (0:(B) — ;(B)).

1<i#j<n

By proposition 2.2 we may assume, that k is infinite. Note that g is not the zero polynomial:
If g =0, we find i # j such that o;(a)) = 0j(a) and 0;(5) = 0;(8). Since o, § generate L,
o; and o; must be equal on L, which is a contradiction. Therefore we find A € k, such that

g(A) # 0. Hence the minimal polynomial m., of vy = o + Af has at least n zeroes, i.e.
deg(my,) = n = [k[n]: k] =n
and hence k[v,] = L. O

Proposition 2.7 Let L = k[a] be a simple, finite field extension, k an algebraic closure of k.
Let f € k[X] the minimal polynomial of . Then for every zero B of f in k there exists a unique

homomorphism of fields o : L — k such that o(a) = B.
proof. The uniqueness is clear. It remains to show the existence. Define
¢ k[X]— &, g g(B).
We have f(8) = 0, thus (f) < ker(¢g) and hence ¢g factors to a homomorphism
G L= HIX] /() — R
such that ¢g = @5 o m where 7 : k[X] —> k[X] /(f) denotes the residue map. Let

TL—»k[X]/(f)

be an isomorphism. Then

satisfies

thus the claim. ]
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Corollary 2.8 Let f € k[X] be a nonconstant polynomial. Then the splitting field of f over k is

unique, i.e. any two splitting fields L, L' of f over k are isomorphic.

proof. Let L = k[ay,...an], L' = k[, ... 0m]
Assume that f is irreducible. W.l.o.g. we have f(a1) = f(B1) = 0. By Proposition 2.6 we find

field homomorphisms

o1 : k[ag] — k[B2] such that o1 = idx and a3 — (4
71 ]{2[51] I k[al] such that Tﬂk = idk and 51 = Q1

Hence, since 01 071 = idy(g,] and 71 001 = idy[q,], 01 and 71 are isomorphisms, i.e k[a1] = k[#].

By induction on n the corollary follows. O

Definition + proposition 2.9 Let L/k, L'/k be field extension.
(i) We define

Homy (L, L") := {0 : L — L' field homomorphism s.t. ol = idk}
Autg(L) := {0 : L — L field automorphism s.t. o|; = idg}
(ii) If L/k is finite, k an algebraic closure of k, then
|Homy (L, L")| < [L : k].

proof. Assume first L = k[«] for some algebraic o € L. Let f be the minimal polynomial of «
over k, i.e. f € k[X], deg(f) = [L : k]. By 2.4 and 2.6, the elements oh Homy (L, k) correspond
bijectively to the zeroes of f. Then we get

|Homy, (L, k)| = |{zeroes of f in k}| < deg(f) = [L : k].

Now consider the general case. Let L = k[aq,...ay] and L' = k[aq,...an—1] € L = L'[ay].

By induction on n we have |[Homy (L', k) < [L’ : k]. Let now
d .
f=>aX"eL[X]
i=0

with coefficients a; € L' be the minimal polynomial of oy, over L. Let o € Homy(L,k) and
o' = 0| € Homy (L, k), 7 := Z?:o o'(a;)X*. Then

d d
7 (o(am)) = Z o’ (a;) (0(om))’ = Z o(a;) (o(an)) =0 (Z am%) = 0.
i=0

i=0 i=0
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Thus
[{Homy (L, B)}| = [{o & Homy(L, F)|o| 1 = idp}| < deg(F) = deg(f) = [I' : L]
So all in all we have
[Homy,(L, k)| < [Homy (L', k)| - [L: L] < [L: L] - [L': k] = [L : k],

which is exactly the assignment. O

Definition 2.10 Let k be a field, f = Z?:o a; X" € k[X], k an algebraic closure of k, L/k an
algebraic field extension.
(i) f is called separable over k, if f has deg(f) different roots in k, i.e. there are no multiple
roots.
(ii) a € L is called separable over k, if the minimal polynomial of «a over k is separable.
(iii) L/k is called separable, if any « € L is separable over k.
(iv) We define the formal derivative of f by

d
fle=>iax!
i=1

We have well known properties of the derivative:
(f+9=f+g, 1=0 (f-9=fd+[g

Proposition 2.11 Let
n —
f=]]X—-a)ekl[X], aickfori<i<n
i=1

Then the following statements are equivalent:
(i) f is separable.

(i) (X —ai) f f for1<i<

(111) ged(f, f') =1 in k[X].

proof. (i) < (ii)’ We have
Z [ [(xX =ay),
i=1j#i
thus we get

(X —a) | fle (X — ) ]H — aj) < o; = o for some i # j.
J#i



16 I GALOIS THEORY

(i) = (iii)” Assume (X — o) { f' for all 1 < i < n. Then
ged(f, f') = 1in k[X] = ged(f, f) = 1 in k[X].
'(iil) = (i)’ Let now ged(f, f’) = 1 in k[X]. Then we can write
l=af +bf, a,be k[X].

Since again k[X] € k[X], we can write 1 = af + bf’ for a,b € k[X] an hence we obtain
ged(f, f/) = 1 in k[X]. This implies

(X —a;)f f forall 1 <i<mn,
which was to be shown. ]

Corollary 2.12 (i) An irreducible polynomial f € k[X] is separable if and only if f' # 0.

(i) Any algebraic field extension in characteristic 0 is separable.
Example 2.13 Let char(k) = p > 0. Then
XP—-1=(X-1)7

Let k = Fp(t) and f = XP —t € Fp(¢)[X]. Then f’ = 0, hence f is not separable, but f is
irreducible in F,(¢)[X].

Definition 4 proposition 2.14 Let L/k be a finite field extension, k an algebraic closure of k
and L.
(i) [L : k]s := |[Homy (L, k)| is called the degree of separability of L/k.

(ii) If L = k[«] for some separable o € L with minimal polynomial m, over k, then
[L: ks = deg(ma) = [L : K].
(iii) If L = k[a] for some « € L, char(k) = p > 0, then there exists n > 0, such that
(L k] =p" - [ K],
(iv) If k € F < L is an intermediate field extension, then
(L5 k], = [L s Fl, - [F : &,
proof. (i) This follows from Propoition 2.6:

[L: k]s = [Homy (L, k)| = |{ different zeroes of f}| =n = [L : k.
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(iii) Write

f = i azXz
1=0

If «v is separable over k, we are done with part (ii). Otherwise by Corollary 2.11 we have

f’=2i-ai-Xi*1;0 < 7-a;,=0 modp forall0<i<n
i=1

Thus we can write f = g(XP) for some g € k[X]. Continue this way until we can write

f = g(XP") for some n € Ny and separable g. Then
[k[a] : k]s = |{ zeroes of g in k}| = deg(g)
and thus we obtain
[kla] : k] = deg(f) = deg(g) - p" = p" - [k[a] : K],

Consider first the simple case L = k(«). Let

f= i a; X" e F[X]

=0

be the minimal polynomial of o over F. Let 7 € Homy(F, k) and let
n .
= Z T(a;) X"
=0

Given o € Homy(L, k) with o|p = 7, notice that o(a) is a zero of f7. Moreover by Pro-
position 2.6, every zero 8 of f7 determines a unique o such that o(a) = . Thus we

have

[{o-€ Homy(L.F) | ol =7} = [{Bk | 7(8) =0}
=[{Bek | f(8) =0} ¥ [L:F].

We conclude

[L: k], = [Homy(L, k)| = |J {oeHom(L,k) | olp =7}
reHomy, (I, k)

= | {o € Homy(L,k) | ol =7} |- |Homy(F, k)|

=[L:F]s-[F: ks

For the general case we can write L = F(aq,...,ay). Define L; := F(aq,...,q;), Lo :=F
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and L, = L. Then L;/L;_ is simple and by the special case above we get

[L:kls =[Ln:Ln-1]s-[Ln-1:k]s

Lp-1]s- - [La: L1]s - [L1: Lols - [Lo : k]s
= [Ln N Ln—l]s L [L2 : Ll]s . [L1 : ]F]S . [F : /{]5
L

which implies the claim. ]

Proposition 2.15 A finite field extension L/k is separable if and only if [L : k] = [L : k]s.

proof. '=’" Let L = k[a,...ay]. Prove this by induction on n.
n=1 This is proposition 12.2(ii)
n>1 Let L' = k[a,...an—1]. Then by induction hypothesis [L’ : k]s = [L’ : k]. Moreover
[L:Ls=][L:L",since L/L is simple by L = L'[«,]. By proposition 12.2 (iv) we
get
[L:kls=[L:L)s-[L :kls=[L:L]-[L.k]=][L:k].

<’ Let € L and f = m, € k[X] its minimal polynomial. If char(k) = 0, f is separable, so «
is separable by corollary 2.11. Let now char(k) = p > 0. By proposition 12.2 there exists
n = 0 such that
We find
[L:k] = [L:k[a]] - [k[a] : k] = [L:k[a]]s - 0" [k[a] i k]s = p" [L:k]s = p" [L: k],

Hence we must have n = 0, i.e. [k[a] : k] = [k[e] : k]s. Thus « is separable over k. ]

§ 3 Galois extensions

Definition 3.1 A field extension L/k is called normal, if there is a subset F < k[X] such that
L is the smallest field which any f € F splits over.
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Remark 3.2 Let L/k be a normal field extension, k an algebraic closure of k. Then
Homy (L, k) = Autg(L).

proof. 2’ Clear.
'c’ Let L be the splitting field of F. Let

d
f=>aX'eF
=0

and a € L such that f(a) = 0. Let 0 € Homy(L, k). Then

d d d
f(o()) = Y aio(a) = Y o(a)o(a) = o (Z aw/) =0 (f(a)) =0,
i=0 i=0 i=0
hence o(«) is zero of f. Since f splits over L, i.e. all zeroes of f are in L, we have o(«) € L.
Moreover L is generated over k by the zeroes of f € F, thus o(L) € L and hence we get
o € Homy (L, L).

It remains to show bijectivity. ¢ is clearly injective. For the surjectivity consider that o

permutes all the zeroes of any f € F. Finally o € Auty(L). O
Definition 3.3 An algebraic field extension L/k is called Galois extension or Galois, if it is
normal and separable. In this case, the Galois group of L/k is defined as

Gal(L, k) := Auty(L).

Proposition 3.4 A finite field extension L/k is Galois if and only if |Auty(L)| = [L : k].

proof. =’ We have
|Auty(L)| = [Homy(L, k)| = [L: k]s = [L: k]

<" We have to show that L/k is separable and normal. First we see
[L: k] = |Auty(L)| < [Homg (L, k)| = [L: k]s < [L: k]

Hence we have equality on each inequality, i.e. [L: k] = [L : k]s and L/k is separable.

By Theorem 2.5 we know that L/k is simple, say L = k[«] for some « € L.

Let mq € k[X] be the minimal polynomial of o over k. Moreover let 3 € k be another zero
of mq. Then there exists 0 € Homy(L, k) such that o(a) = 8. By the (in-)equality above
we know Auty(L) = Homy (L, k), hence () € L. Since B was arbitrary, mq, f splits over
L, i.e. L is the splitting field of f over k. Thus L/k is normal and finally Galois. O

Example 3.5 All quadratic field extensions are normal. Moreover, if char(k) # 2, then all

quadratic field extensions of k are Galois.
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Remark 3.6 Let L/k be a Galois extension and k € K € L an intermediate field.

(i) Then L/K is Galois and
Gal(L/K) < Gal(L/k)

(i1) If K/k is Galois, then Gal(L/K) < Gal(L/k) is a normal subgroup and
Gal(L/k) /Gal(L/K) = Gal(K /k).

proof. (i) Clearly L/K is normal, since L is the splitting field for the same polynomials as in
L/k. Let now o € L. Then the minimal polynomial m, of a over K divides the minimal
polynomial m/, of « over k, since k € K. Since m/, has no multiple roots, m, does not
either and hence L/K is separable and thus Galois.
(ii) Define
p: Gal(L/k) — Gal(K/k), o0 — ol|k.

p is well defined since o| € Homgk(K, k) = Auty (K) = Gal(K /k) as K /k is Galois:
[K : k] = |Aut,(K)| < |Homy (K, k)| < [K : k].
Moreover p is surjective. For the kernel we get
ker(p) = {0 € Gal(L/k) | o|g = idk} = Gal(L/K)

and thus we obtain Gal(L/k) /Gal(L/K) = Gal(K /k). O

Theorem 3.7 (Main theorem of galois theory) Let L/k be a finite Galois extension and G :=
Gal(L/k). Then the subgroups H < G correspond bijectively to the intermediate fieldsk < K < L.

Ezxplicitly we have inverse maps

K — Gal(L/K) < G
H—L":={aeL|o(a)=a foraloe H}.

proof. Clearly LY is a field for any H < G. We now have to show
(i) Gal(L/L) = H for any H < G.
(i) LGAUL/K) — K for any intermediate field k € K < L.
Theese prove the theorem.
(i) We show both inclusion.
'D’ Clear by definition.
'C’ Tt suffices to show |Gal(L/L")| < |H|. By 3.4(i) we have

|Gal(L/L™)| = [L: LH].
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By theorem 2.5 L/L is simple, say L = L[a]. Define

f=1](x-0()
oeH
with deg(f) = |H|. Further, since id € H, we have f(a) = 0. Clearly f € L[X]. We
want to show that f € L[X]. Therefore for 7 € H define

n n
g = Z 7(a;) X" for g = Z a; X"
i=0 1=0

Then for f as defined above we have

F=11&=7@)=]] X -0) =7
oceH oceH
hence f € L¥[X]. From f(a) = 0 we know that the minimal polynomial m,, of o over
LH divides f, thus

|Gal(Z/L")| = [L: L"] = deg(ma) < deg(f) = |H]

(ii) 'D2’ Clear by definition.
'C’ Let H := Gal(L/K). Since K < L it suffices to show [L : K] = 1. Since L /K is
separable, this is equivalent to [L : K], = 1. Let now o € Homg (L k). By 2.6 we

can extend o to

Gg:L—k
with &|,n = o. Explicitly: Let L = L¥[a] and f € L[X] its minimal polynomial.
Choose a zero 3 € k of f7. Then by 2.6 there exists ¢ : L — k with 6(a) = 8 and
Glpe = 0. We get 6 € Gal(L/K) = H and 0 = &|pz = idg which finally implies
[L7 K] =1. ]

Remark 3.8 An intermediate field k < K < L is Galois over k if and only if Gal(L/K) <
Gal(L/k) is a normal subgroup.

proof. =" If K/k is Galois, then Gal(L/K) = ker(p) is a normal subgroup by 3.5.
<" Conversely let Gal(L/K) =: H < Gal(L/k) be a normal subgroup. By 3.4 it suffices to show
Homy (K, k) = Auty(K). Let now ¢ € Homy (K, k) and o € K. Extend o to 6 : L — k.
Then & € Gal(L/k). By the theorem it suffices to show that o(a) € LEE/K) — K e,
o(K) € K. Let 7 € Gal(L/L"). Then, since Gal(L/K) is normal, we obtain

T(0(a)) =7(6(a)) = (5 07) (@) = 5(a) = o(a),

which implies the claim. ]
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Example 3.9 Let k = Q, f = X® —4X + 2 € Q[X]. Further let L = L(f) be the splitting field
of f over Q. What is Gal(L/Q)?.
We first want to show that f is irreducible. But this immediately follows by By Eisenstein’s
criterion for irreducibility with p = 2.
Thus L is an extension of Q /(f). Therefore [L : Q] is multiple of [Q /(f)] = 5, hence |Gal(L/Q)|
is divisible by 5. By Lagrange’s theorem we know that Gal(L/Q) contains an element of order 5.
Further note that f has exactly 3 zeroes in R. With

lim f(x) =—00 <0, f(0)=2>0, f(1)=-1<0, lim f(x) =0>0

T—00 T—>—00©

we see by the intermediate value theorem that f has at least 3 zeroes. Moreover

f’=5X44=5'<X4§>:5'<X2%>'<X2+\3§,>

Obviously, since the second factor has not real zeroes, the derivative of f has 2 zeroes, hence f
has at most 3 zeroes. Together we obtain that f has exactly 3 zeroes. Since f splits over C, f
has two more conjugate zeroes in C, say 3, 3. Hence we know that the conjugation in C must be
an element of Gal(L/Q).

To sum it up, we know: Gal(L/Q) is isomorphic to a subgroup of S5, contains the conjugation,
which corresponds to a transposition and moreover an element of order 5, i.e. a 5 — cycle. But

these two elements generate the whole group Ss. Hence we have Gal(L/Q) =~ S5.

Proposition 3.10 (Cyclotomic fields) Let k be a field, n € N, char(k) 1 n and L the splitting
field of the polynomial f = X™ — 1.
Then L/k is Galois and Gal(Ly/k) is isomorphic to a subgroup of (Z /nZ)™ .

proof. We have f' = nX" ! and f' =0 < X = 0 but f(0) # 0, hence f’ and f, are coprime.
Thus f is separable. Since L is the splitting field of f by definition, L/k is normal, thus Galois.
The zeroes of f form a group p, (k) under multiplication. By proposition 2.3 u, (k) is cyclic. Let
(n be a generator of u, (k). Define a map

Xn -+ Gal(Ln/k) - (Z/nZ)X o— mif J(Cn) = Criﬂ

where m is relatively coprime to n. We obtain that x, is a homomorphism of groups since for

01.09 € Gal(Ly/k) we have 0201((n) = 02 (¢F1) = (Cf,fl)kQ = ¢Mk2 and hence

Xn (0102) = ki - ko = xn(01) - Xn(02).

Moreover x,, is injective, since
Xn(0) =1<0((,) = <o =id.
This proofs the proposition. Recall that | (Z /nZ)” | = ¢(n) Where ¢ is Euler’s ¢-function. [J
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§ 4 Solvability of equations by radicals

Definition + remark 4.1 Let k be a field, f € k[X] separable.
(i) Let L(f) be the splitting field of f over k. The Galois group of the equation f = 0 is defined
by
Gal(f) := Gal(L(f)/k).

(ii) There exists an injective homomorphism of groups Gal(f) — S,, where n := deg(f).
(iii) If L/k is a finite, separable field extension, the Auty (L) is isomorphic to a subgroup of S,
where n = [L : k].

proof.  (ii) Clear, since automorphisms permute the zeroes of f, of which we have at most n.
(iii) We know L/k is simple, say L = k[«a] for some « € L. Let m, be the minimal polynomial
of a over k. Then deg(f) = n. Every o € Aut(L/k) maps « to a zero of f and the same for

every zero of f. Hence the claim follows. O

Definition 4.2 (i) A simple field extension L = k[a] of a field k is called an elementary
radical extension if either
(1) «is a root of unity, i.e. a zero of the polynomial X™ — 1 for some n € N.
(2) ais aroot of X™ — ~ for some 7 € k,n € N such that char(k) t n.
(3) ais aroot of XP — X — ~ for somme 7 € k where p = char(k).
In the following, we will denote (1), (2) and (3) as the three types of elementary radical
extensions.
(ii) A finite field extension L/k is called a radical extension, if there is a field extension L'/L

and a chain of field extension
k=LycLli<--C L, =1L
such that L;/L;_; is an elementary radical extension for every 1 <1i < m.
Example 4.3 Let k = Q, f = X? — 3X + 1. The zeroes of f (in C) are
a1 =C(+CreR aw=C+¢?andag=¢t+ ¢!
where ( = e is a primitive ninth root of unity. We show this exemplarily for a;;. We have
flar) = (af =3a1+1) = C+3¢C+3¢C"+¢?-3(-3C"+1 = C+¢3+1 =0

where we use (3 = (=3 and since z +Z = 2 - Re(z) for any z € C we have

GHc? = 29 (C?’) = 2-Re (e2T> = 2-Re (COS37r —I—i-sin;> = 2-cos§ = 2-<—> = -1
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Further we have

2 =C+202+2=0ay+2,

hence ag € Q(a1) and ag + ag + az = 0, hence a3 € Q(ag, az) = Qo).

This means that Q(aq) contains all the zeroes of f, i.e. is a splitting field of f. We conclude

Q) =Q/(f),  [Q(ar): Q] =3.

From the f we see that Q(ay)/Q is not an elementary radical extension, but a radical extension,

since for Q(¢) we have Q(a1) € Q(¢) and Q(¢)/Q is an elementary radical extension.

Definition 4.4 Let k be afield, f € k[X] a separable, non-constant polynomial. We say f is
solvable by radicals, if the splitting field L(f) is a radical extension.

Remark 4.5 Let L/k be an elementary field extension, referring to Definition 4.1 of type
(1) L = k[C] for some root of unity ¢ (primitive for some suitable n € N, char(k) 1 n). Then
L/k is Galois with abelian Galois group

Gal(L/k) = (Z /nZ)* .

(2) L = k[a] where a is a root of X™ —~ for some v € k,n € N,char(k) { n. If k contains the
n-th roots of unity, i.e. uy(k), then L/k is Galois with cyclic Galois group.

(3) L = k[a], where « is a root of XP — X — ~ for some v € k*. Then L/k is Galois with
Galois group

Gal(L/k) =~ Z /p7.

proof. (1) We proved this in proposition 3.9.
(2) Let € € k be a primitive n-th root of unity. Then (?-« is a zero of X™ —+, where we assume
n to be minimal sucht that X™ —  is irreducible. Then L contains all roots of X" — v, i.e.

L/k is normal and thus Galois with
|Gal(L/k)| = [L: k] = deg(X" —7) =n

Since the automorphism o € Gal(L/k) that maps o — (-« has order n, Gal(L/k) is cyclic.
(3) f=XP— X —~ has p zeroes in L = k[a]. Since f(a) = 0, we have

fla+l)=(a+1)—(a+l)—y=a’+1—-a—-1—-y=aP—a—7y=f(a) =0

Hence L is the splitting field of f and L/k is normal. Moreover f’ = —1 # 0, hence L/k is

separable and thus Galois with

(Gal(L/k)| = [L: k] = deg(f) = p
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Further Gal(L/k) 30 : a+— «a + 1 has order p, hence Gal(L/k) is cyclic and thus
Gal(L/k) = Z /p7,

which is the claim. ]

Remark 4.6 Let L/k be an elementary radical extension of type (ii), i.e. L = k[a], where « is
the root of f = X™ — ~ for some v € k,n = 1,char(k) { n. X™ —  is irreducible

Let F be a splitting field of X™ — 1 over k and LF = k(«, () be the compositum of L and F, i.e.
the smallest subfield of k containing L and .

L=LF
RN
L = k[a] k[¢] =TF
~.

L is a splitting field of X™ — ~ over F, hence L/F is Galois and by 4.4(ii), Gal(L/F) is cyclic.
Moreover F/k is Galois and Gal(F/k) is abelian. Hence L/k is Galois and

Gal(L/k) /Gal(L/F) = Gal(F/k)
i.e. we have a short exact sequence

1 —> Gal(L/F) 25 Gal(L/k) 2% Gal(F/k) — 1.
—— —_——

cyclic abelian

Example 4.7 Let k = Q, f = X3—2. Then L = Q[a] with a = ¥/2 and F = Q[¢] with ¢ = e%
Then L = L(f) with [L : Q] = 6. We obtain

Gal(L/F) = Z /37,, Gal(F/k) = Z /27,, Gal(L/Q) = Ss.
Definition 4.8 A group G is called solvable, if there exists a chain of subgroups
1l =Gy<G <...<G,=G

where G;_1 < G; is a normal subgroup and G; /Gi,1 is abelian for all 1 < i < n.

Example 4.9 (i) Every abelian group is solvable.
(ii) Sy is solvable by
1< Vi< Ay < Su
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where Vy = {id, (12)(34), (13)(24), (14)(23)}. For the quotients we have
Vi/{1} =Z /o7 xZ )27,  Aa)Vy =Z /37,  Si/Ay =Z/27.
(iii) S5 is not solvable, since Aj is simple (EAZ 6.6) but the quotient As /{1} is not abelian.
(iv) If G, H are solvable groups, then the direct product G x H is solvable.

Proposition 4.10 (i) Let G be a solvable group. Then
(1) Every subgroup H < G is solvable.
(2) Every homomorphic image of G is solvable.
(ii) Let
1 —-G —G—G —1

be a short exact sequence. Then G is solvable if and only if G' and G" are solvable.

proof. (i) (1) Let G be solvable, i.e. we have a chain 1 = Gy<G1<---<G, = G. Let G' < G
a subgroup. Then
1< GnG <...<G,nG =&

is a chain of subgroups of G’ and we have G; N G’ < G;;1 n G’ and moreover
(Gix1n G') /(Gl NG = Gi(Gin1nG) /G, <Giv1/G;.

Hence we have abelian quotients and G’ is solvable.

(2) Let H be a group and ¢ : G —> H be a surjective homomorphism of groups. Let
1< Gy <= ... < G, = G.

Let H; := ¢(G;). Then H; is normal in H;;1. It remains to show that the quotients

are abelian. Consider

G; Git1 "¢ Giv1/q;
b AN
AN
6 @ SN 3
CEN
N
A
H; Hia —— Hiv1/H,

(We have G; < ker(¢), since ¢(G;) = H; = ker(myr). Hence ¢ factors to

¢‘G+1/Gl +1/HZ

abelian = abelian!

and we get ¢(a)p(b) = d(ab) = ¢(ba) = ¢(b)d(a), hence the quotient is abelian and
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H = ¢(G) is solvable.
(ii) '=’ Clear.
‘<" Let

1<Gi<---<Gy =0, l<Hpp<--<Hy.=G"
chains of subgroups with abelian quotients. Define
Gi=n"1! (Hi)pms1<icman: ™:G— G".
Then G; is normal in G;11 and we have
Gmio=11{1}) =G = G,,.
For m +1 < i <m + k we have
Giy1/G; = ' (Hiv1 /H;) = Hiv1 /H,
and hence the chain
1<Gi< - <Gpn=G<Gpni1<-<9Gusr =G

reveals the solvability of G. O

Lemma 4.11 A finite separable field extension L/k is a radical extension if and only if there
exists a finite Galois extension L'/k, L < L' such that Gal(L'/k) is solvable.

proof. =" Let
k=ky=LgcLic---< L,

a chain as in definition 4.7 with L € L,,. we prove the statement by induction.

n=1 This is exactly remark 4.5, 4.6

n>1 By induction hypothesis L,,_;/k is solvable. Moreover L,,/L,_1 is solvable, too. This
is equivalent to the fact, that L,_; is contained in a Galois extension IN/n,l /k such
that Gal(L/k) is solvable and L, is contained in a Galois extension L/L,_; such that
Gal(L/L,_;) is solvable. We have a diagramm

Lp1 <€ LL,, = M
ul Ul
k € Lhnq1 < Lp c L

We obtain, that M is Galois over L,,_1, since f/, f}n,l are Galois over L,_1, hence by

v Gal(M/Ly— 1) — Gal(L/Ln—1), 0~ ol
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an injective homomorphism of groups is given, hence
Gal(M/Ly,_;) < Gal(L/Ly_)

is solvable as a subgroup of a solvable group.

Let now M/M be a minimal extension, such that M/k‘ is Galois. Explicitly, M is
defined as the normal hull of M, i.e. the splitting field of the minimal polynomial of
a primitive element of M/k.

Now we want to show that Gal(M/k is solvable.This finishes the proof of the sufficiency

of our Lemma. Consider the short exact sequence
1 — Gal(M/L,_;) — Gal(M/k) — Gal(L,_;/k) — 1.

By proposition 4.8 and our induction hypothesis it suffices to show that Gal(M/L,_ ;)
is solvable. Therefore observe that M is generated over k by the o (k) for o € Homy (M, k),
where k denotes an algebraic closure of k. For any o € Homy (M, k), o(M)/o(L,_1) =
o(M)/L,_; is Galois. Hence

& - Gal(M/lN/n,J) N H Gal (U(M)/lw/nq) , T (T|J(M))U
oeHomy (M,k)

is injective. Hence Gal(M/ Ln_ 1) is solvable as a subgroup of a product of solvable

groups.

"<’ Let now L/L finite such that Gal(L/k) is solvable. Let

1« Gi < ... < G, = G

be a chain of subgroups as in definition 4.7. By the main theorem we have bijectively

correspond intermediate fields

where L;y1/L; is Galois and Gal(L;1 /L) = Z /p7Z for all 1 < i < n — 1. We now have to

differ between three cases.

case 1 p; = char(k). Then L;,1/L; is an elementary radical extension of type (iii), i.e. L/k
is a radical extension.

case 2 p; # char(k) and L; contains a primitive p;-th root of unity. Then L;,1/L; is an
elementary radical extension of type (ii), i.e. L/k is a radical extension.

case 3 p; # char(k) and L; does not contain any primitive p;-th root of unity. Then define

d:=Hp

peP,pl|G]
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And let F be the splitting field of X% — 1 over k. Then F/k is an elementary radical
extension of type (i). Let L' := LI be the composite of L and F in k. Then L'/F is
Galois by remark 4.5. Let G’ = Gal(L'/F). Consider the map

U : Gal(L//F) — Gal(L/k), o~ o;.

U is a well defined injective homomorphism of groups, hence Gal(L'/F) < Gal(L/k)

is solvable as a subgroup of a solvable group. Let
1« Gy < ...< G, =G
a chain of subgroups as in definition 4.7. Let further be
kcF=Lycli<c---<L,=1'

be the corresponding chain of intermediate fields, i.e L;/L;_; is Galois and Gal(L;/L;_;) =~
Z [pz, for 1 <i < n. Hence, L;/L;_ is a radical extension of type (ii). Thus L/k is a

radical extension, which finishes the proof. O

Theorem 4.12 Let f € k[X] be a separable non-constant polynomial. Then f is solvable by
radicals if and only if Gal(f) = Gal(L(f)/k) is solvable.

proof. Let f be solvable by radicals, i.e. L(f)/k be a radical field extension.

< L(f) is contained in some Galois extension L/k and Gal(L/k) is solvable.

« Ink < L(f) € L all extensions are Galois.

<> Gal(L(f)/k) = Gal(L/k) /Gal(L/L(f))

<= Gal(L(f)/k) is solvable. O

Theorem 4.13 Let G be a group, k a field. Then the subset Hom (G, k*) < Maps(G, k) is linearly
independant in the k-vector space Maps(G, k).

proof. Suppose Hom(G, k*) is linearily dependant. Then let n > 0 minimal, such that there exist
distinct elements x1,...xn € Hom(G,k*) and Aq,... A, € £ such that

Zn: Aixi = 0.
i=0

The x; are called characters. Clearly we have n > 2. Choose g € G such that x1(g) # x2(g). For

any h € G we have

0= ) Aixi(gh) = ) Aixi i(h) = iXi(h).
;) Xi(gh) Z;] xi(9) xi(h) ;)MX()

1=
=y
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Then we get

0= ;}Mixz’(h) = ;))\iXi(g)Xi(h) = Z (i — Xix1(9)) xi(h) =

=0 —
Consider
vi = — Axi(g) = Mxi(g) — Mxi(g) =0,
Vo = g — A = A - A = A - — # 0.
2 = H2 2x1(9) 2x2(9) 2x1(9) 2 - (x2(9) —xa(9))
#0 #0
Hence xa2, ... xn are linearily dependent. This is a contradiction to the minimality of n. O

Proposition 4.14 Let L/k be a Galois extension such that G := Gal(L/k) = (o) is cyclic of
order d for some o € G, where char(k) 1 d. Let {4 € k be a primitive d-th root of unity.

Then there exsits a € L™ such that o(a) = C - av.

proof. Let
-1
fiL—1L,  f(X) = ) (o' (X)
i=0

Applying Theorem 4.10 on G = L* and k = L shows f # 0. Then let v € L such that
a:= f(y) # 0. Then we have

d—1
ola)=0(f(7) =0 (Z ¢i Ui(,ﬁ) _ Z ol UHI('V) _ ¢ Z €7(1+1) UZH('y)
i=0 i=0 i=0
d y y dil . .
:C.ZC—Z_OJ(,)/) :C<<2 <_1'01(7)> +7>
i=1 i=1
=C-f(y) = Ca
Remark: The claim follows from Proposition 5.2 by insertig g = . N

Corollary 4.15 Let L/k be a Galois extension, such that G := Gal(L/k) = (o) is cyclic of order
d for some o € G, where char(k) { d. Assume k contains a primitive d-th root of unity.

Then L/k is an elementary radical extension of type (ii).

proof. Let (4 € k be a primitive d-th root of unity and « € L* such that o(a) = ¢ - a.
We have

o) =C"a for 1 <i<d.

The minimal polynomial of a over k has at least d zeroes, namely a,o(c),...0% 1 (a). Thus

L = Ek[a]. Moreover we have
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hence

Oéd c L(o’) _ LGal(L/k) =k

where the last equation follows by the main theorem. Define v := a. Then the minimal polyno-

mial of a over k is X? — v € k[X], which proves the claim. O

Proposition 4.16 Let L/k be a Galois extension of degree p = char(k) with cyclic Galois group
Gal(L/k) = Z /p7, = (o). Then there exists o € L* such that o(a) = a + 1.

proof. The proof follows by Proposition 5.4 by setting 5 = —1. O

Corollary 4.17 Let L/k be a Galois extension of degree p = char(k) with cyclic Galois group
Gal(L/k) = Z /p7 = (o). Then L/k is an elementary radical extension of type (iii).

proof. Let a € L™ such that o(a) = a + 1. We have
o) =a+i for 1 <7 <p,
thus we have L = k[a]. Moreover we have
ola? —a)=0cP(a) —c(a)=(a+1)! —(a+1)=aP +1—a—-1=a" —a.

Thus again we have of € k. Define v := af — a. Then the minimal polynomial of « over k is

XP — X — ~, which proves the claim. O

§ 5 Norm and trace

Definition + remark 5.1 Let L/k be a finite separable field extension, [L : k] = n. Let
Homk(L,E) = {0'1, “. O'n}.

(i) For a € L we define the norm of a over k by

NL/k(a) = H 0'7;(04).
i=1

(ii) Ny, €k forall ae L.

(i) Nps : L* — k* is a homomorphism of groups.

proof. (i) Let a € L. Assume first that L/k is Galois. Then Homy (L, k) = Auty (L) = Gal(L/k).
For 7 € Gal(L/k) we have

7 (Nop) = (H ) [] (7o) (@) = Ny,

=1 Y
eGal(L/k)
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hence Ny, € LGaL/k) — k. Now consider the general case. Let L © L be the normal hull

of L over k. Recall that L is the composition of the o;(L), i.e. we have

hence Ny () € LGalL/k) — .
(iii) We have Ny (o) =0 <= 0i(a) =0 for some 1 <i<n < a=0.

Moreover

NL/k:(O"/@) = HUz‘(OéB) = HUI(O‘)UZ'(B) = (HUA@)) : (Hm(ﬂ))
i=1 ' '

ic1
= Nps(a)  Npi(B),

which proves the claim. O

Example 5.2 (i) Let a € k. Then

n

Npjp(a) = Hai(a) = Ha ="

i=1 i=1

(ii) Let k = R, L = C. Then Homg(C,R) = Gal(C/R) = {id,z > z} and thus the norm ist
Np(z) = 2z = |2|.
(iii) Let k = Q, L = Q[v/d] for d € Z squarefree. We have [Q[v/d] : Q] = 2 and

Gal(Q[Vd]/Q) = {id,Vd — —vd} = {a + bVd — a + bvVd,a+ bvd > a— bVd}.
Then we have
Nopvaola + bVd) = (a + b\/@ (a - b\/a) = a® — db*

° d<0:d=—J,hencea2+db2;1=>eithera=il,szorazO,bzil,J:L

e d > 0: Infinitely many solutions for a? — bd? = 1.

Proposition 5.3 (Hilbert’s theorem 90 - multiplicative version) LetL/k a finite Galois extensi-
on with cyclic Galois group Gal(L/k) = (o), n = [L : k]. Let 8 € L with Np;,(8) = 1.
Then there exists o € L™ such that 8 = =%~

o(@)
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proof. Define

f=idi+ o+ Bo(B)o® + ...+ Ba(B)a*(B) -+ " (B)o" ! =} o Ha“w)-
Then by Theorem 4.10 f # 0. Choose « € L such that « := f(v) # 0. Then we have

Brola) =B-a(f(7)=5" (U <7+50(’Y) + +ﬁ Ui(ﬂ)anl(’v)))

=0

1
2 5
B-(c(v) +a(B)o*(V) + ... +7)

o(y) + o(B)o*(y) + ... +

5 <a<~y> +o(@)o* )+t [ 0”1(ﬁ)0”(’y)>

Npk(B) "Y)

n—2

= 7"‘50(7) ‘|‘ﬁ0’(ﬁ)o‘2(7) + .. ‘|‘ﬁ H O'i(ﬁ)O'n_l(’y)

=1

= f(7) = Q,
which is the claim. ]

Definition + remark 5.4 Let L/k be a finite separable field extension, [L : k] = n. Let
Homk(L,E) = {0’1, ce Un}.
(i) For ac € L,

I
.M:

tri(a) : oi(a)

is called the trace of o over k.
(ii) trpk(a) € k for all a € L.

(iii) trp : L — k is k-linear.

proof.  (ii) As in proof 5.1, trp () is invariant under Gal(L/k).
(iii) Clear. O

Example 5.5 (i) Let a € k. Then

trp(a) =

n
oi(a) = Zoz=n~oz.
1=0

OM:

)

(ii) Let k=R, L = C. Then tre/r(z) = 2 + 2 = 2- Re(z).

Proposition 5.6 (Hilbert’s theorem 90 - additive version) Let L/k be a Galois extension with
cyclic Galois group Gal(L/k) = (o) and [L : k] = char(k) = p € P. Then for every § € L with
tre(B) = 0 there exists a € L such that f = a — o(a).
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proof. Define

I
]

p—2 p—2 7
g=B-0+(B+0(B) o> +...+ (Z ai(,ﬁ)> P! (Z Uj(ﬁ)> SottL
i=0 =0

1=0

Let now v € L such that trp,(y) # 0 (existing by 4.11). Then for

o= 1 .
o trok(y) it
we have
1
a—ola) = troe(7) (9(v) = o (9()
_ 1 S 2 o (B) | ot (y) | — $ 7N B) ) o ()
tro(y) 0 \U=o i=0 \j=0
_ 1 ST wi) (S (v i+1
a tro () ((Z_O (%Uj(ﬁ)> ’ (’Y)> (i—l <j—1 UJ(B)) 7
1 = i _
~trop(y) (ioﬁ'a M) -7
and we obtain the claim. ]

Proposition 5.7 Let L/k be a finite separable extension, a € L. Consider the k-linear map
¢q:L— L, x+— -z

Then
(i) Npj(a) = det(¢q).
(i) trip(a) = tr(da).

proof. Let
d
f = Z aiXi
=0
be the minimal polynomial of o over k. Then it holds
(fo¢a) (@) = f(¢a(r) = D aiph(z) = Y ad’ -z =2 ) @’ =z f(a) =0
=0 1=0 =0

For arbitrary x € L, hence f(¢q) = 0.
case 1.1 Assume first L = k[a] for some a € k. Then [L : k] = deg(f) = d, so {1, a,...,a% "}
is a k-basis of L. Then we have a transformation matrix of ¢, with respect to the basis

{L,a,...,a% 1}
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0 0 0O ao
1 0 —aq
D=1o0 1
0
0O ... 01 —ag—

thus we have tr(¢,) = —aq_; and det(¢o) = (—1)? - ag. We know that f splits over k, say

d

d
f= H(X — i) = H (X —oi(a))

Then we easily see

d
det(¢a) = (=1)"-ag = (=1)*- £(0) = (=1)*- [ [(0 = 04(a)) =
=1

-
i :]&
I

oi(a) = Np (o),

7

tr(da) = —aqg—1 = try ().

case 1.2 For the case a € k, ¢, is represented by the diagonal matrix € kx4,

0
We obtain

tr(da) = d - o = trp(a) det(¢a) = at = trrp(a).

case 2 For the general case we have k € k(o) € L.
Claim (a) The following is true:

Npi(@) = Niappe (Npjwy (@) s trpm(e) =ty (070 k) (@)

Claim (b) The following identity holds:

det(¢a) (det (¢a|k(a)))[L:k(a)]

tr(¢a) = [L: k(e)] - tr (falk(m)) -
Assuming Claim (a) and (b), we get

det(¢a)

1 L:k(a . L:k(a N Lk(a
( et (¢Oé|k(a)))[ @ 4 (Nk(a)/k)[ @) k(a)/k( Lkt )])
1.2

= Nk (N k() (@)
@ Np ()

And analogously tr(¢a) = trp,(a).
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Let’s now proof the claims.
(b) Let x1,...xz4 be a basis of k(a)/ as a k-vector space and yi, ...y, a basis of L as a k(«a)-
vector space. Then the z;y; for 1 < i < d, 1 < j < m form a k-basis for L. Let now

D € k%*? be the matrix representing ¢,| k(a)- Then we have

ary; = (ax;) y; = (D - x) y5,

ek(a)
hence ¢, is represented by
A 0 0
- 0 A
D=
0 0 A
(a) This is an exercise. ]

Definition 4 remark 5.8 Let L/k be a finite field extension, r» = [L : k]s = [Homy (L, k)|. Let
_ Lk
9= 1],

(i) For a € L define

Npjp(a) = det(da)  trppp(e) = tr(¢a).

(ii) Let Homy(L,k) = {01,...,0:}. Then

Npjp(a) = (H Ui(a)> ;o trpp(a) = (Z Ui(a)> -q.
=1 i=1

proof. Copy the proof of 5.5. Recall that the minimal polynomial of « over k is given by

r

mo = | [(X = ai(@)?,

i=1

where ¢ is defined as above. ]

§ 6 Normal series of groups

Definition 6.1 Let G be a group.
(i) A series
G=Gy > G > ... = Gy

of subgroups is called a normal series for G, if G; < G;—1 is a normal subgroup in G;_1

and G; # G,;_1 for 1 < i < n. The groups H; := Gi—1 /G, are called factors of the series.
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(ii) A normal series as above is called a composition series for G, if all its factors are simple
groups and G,, = {e}.
Example 6.2 (i) For G = Sy we have a composition series
G=54 > A = Vy =T; > {e}
where Ty = {id, o0} >~ Z /27, for some transposition o € Sy. We have quotients
Si/Ay =Z)27,, As)vy =237, Vi/Ty =Z/27,, Ti/{e} =7/27

(ii) Z has no composition series.
(iii) Every normal series is a composition series.

(iv) Every finite group has a composition series.

Remark 6.3 IfG =Gy > G; > ... = G, = {e} is a normal composition series for a finite

group G, then the following is clear:
Gl =] [IGi-1 /Gl
i=1

Definition + remark 6.4 Let G be a group.
(i) For subgroups Hi, Hy < G let [Hy, Ha] denote the subgroup of G generated by all commu-

tators

[h1, ha] = hihohy'hs ! with h; € H; for i € {1,2}.

(i) [G,G] = G is called the derived or commutator subgroup of G.
(iii) G’ <G and G? := G /G' is abelian.
(iv) Let A be an abelian group and ¢ : G —> A a homomorphism of groups. Let 7 : G —> G

denote the residue map. Then G’ < ker(¢), thus ¢ factors to a unique homomorphism
G:GP — A, such that ¢ = g o .

(v) The chain
GG =G =G0 >..=G6"Y=[G"aG"

is called the derived series of G.

(vi) G is solvable if and only if its derived series stops at {e}.

proof. (iii) For g € G, a,b € G we have

glablg™' =gaba b 'g =ga glgbglgat gTlg b
——
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Moreover

e = [a,b] = [a,b] =aba b1 <= ab=ab=ba = ba.
(iv) Let A be an abelian group, ¢ : G —> A a himomorphism. For z,y € G we have

o([z,y]) = dlayz'y™!) = d(z) = d(y)p(z) 'o(y) ' =e = G < ker(¢).

(vi) <’ If the derived series of G stops at {e}, G has a normal series with abelian factors and
is solvable.
'=’ Let now G = Gy > ... =G, = {e} be a normal series with abelian factors. We have
to show that G(™ = {e}.
Claim (a) We have G®) € G, for 0 < i < n.
Then we see G™ < G,, = {e} an hence the derived series of G stops at {e}. It remains
to prove the claim.
(a) We have m; : G; — Gi /@G, is a homomorphism from G to an abelian group.
Then by part (iv), we have Gl(l) = G < ker(m;) = Giq1.
By induction on n we have G = (GU~1) < G;, hence (G(i))/ c G;7.
Thus we get
Gl — (G“))' C G < ker(ny) = Gyan,

which finishes the proof. L]

Proposition 6.5 A finite group G is solvable if and only if the factors of its composition series

are cyclic of prime order.

proof. =" Let
G =G >G> ... =G, = {1}

be a normal series of G with abelian quotients G; — 1/G; for 1 < i < m. Refine it to a

composition series
G = Gy = Hypo=Hp1>..>Hyqy= G1 = Hig>...ccH—-1,d1 = Ga > ... > G, = {1}.
Then we have

Hij /Hij1 = Hij [Gi /Hi7j+1/Gi+1 c Gi/Gin /Hi,j+1/Gi+1

hence H; ; / H; j+1 1s isomorphic to a subgroup of a factor group of an abelian group, thus
abelian.
'<" Since the factor groups of the composition series are isomorphic to Z /pZ for some primes

p, the quotients are abelian, thus G is solvable. O
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Theorem 6.6 (Jordan - Hélder) Let G be a group and
G=Gy =G > ... > G, ={e}
G=Hy > H > ... > H, ={e}
be two composition series of G. Then n = m and there ist o € S, such that
Hi [H;,, =~ Gop /Ga(i)+1 for0<i<n-—1

proof. We prove the statement by induction on n.
n=1 G is simple and thus H; = {e}.
n>1 Let G := G /G, and m: G —> G be the residue map.
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Then H; = n(H;) < G is a normal subgroup. Since G is simple, hence we have H; €

{{e},G}. If H; = G, then Hj is a normal subgroup of H; = H, and so on. Hence we find

j€{l,...m} such that

H;=G for0<1<j and H; = {e} forj+1<i<m.

Define C; := H;nG1 < Gy for 0 < i < m.

Claim (a) If j < m — 2, then we have a composition series for Gy:

G1=C() > Cl = ... > Cj >Cj+2 > ... > sz{e}.

If 5 = m — 1, we have a composition series for Gy:

Gi=Cy>C > ... =Cp_1 = {e}.

Clearly G1 > G2 > ... > G, = {e} is a composition series, too. By induction hypothesis

we have n — 1 = m — 1, hence n = m. Moreover we have for i # j

Ci [Ciyr = Goli) /Ga(i)Jrl

(%)
& /Cj+2 = G () /Ga(j)+1

For some o : {0,1,...,5,j+2,7+3,...,n—1} — {1,...,n— 1}
Claim (b) We have

(1) Cjy1=0C;

(2) Ci/Ciy1 = Hi /H;,, fori+#j.

(3) Hj /Hjy =G =G/G,.
By (%) and Claim (a),(b) the theorem is proved.

It remains to show the Claims.

(a) Cj41is a normal subgroup of C;, Ci11 = Hit1 n Gy. Further Cjq is normal in Cj = Cj 4
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by Claim (b)(2) and C; /C; = Hi/H;,, for i # j is simple by Claim (b)(2). Then
Cj/Cjya =Cj/Cj41 = Hj [Hj,, is simple, too.

(b) (1) We have Hj;1 < Gy, hence Hjy1 n Gy = Hj11 = Cj11. C; = Hj n Gy is normal
subgroup of H;. Thus H; = C; = Cj11 = Hj;1. Since H; /Hi+1 is simple, we must
have C; = Cj41.

(2) i>j Then C; = H; n G; = H; since H; < Gj.
i<j We have H; = G = G /G, . Then we have G1H; = G (%), since:
'c’ Clear.

'>’ For g € G, € G its image there exists h € H; such that

E:§:>E 1§€G1<:E lgzgleG1:>g:hgleHZ-G1.

With the isomorphism theorem we obtain
Ci /Ci-i-l =C; /Hi+1 NnG; = Ci /Hi+1 NnC; = CiHit1 /Hi+1-

Therefore it remains to show that C;H; 1 = H;.
'’ Since C;, H; 11 € H; we also have C;H; 11 € H;
'D’ Let x € H;. by (%) we have H;11G; = G. Then there exists g € G1,h € Hiy1
such that z = gh, thus we have g = xh™' € H;H; 11 = H;,i.e.ge G;nH; = C4
and thus x € C;H;4 1.
(3) We have

Hi [Hipy = H; /Oy = Hj JO; = Hi [H; Gy = GiH; /6, 2 G ay,

which finishes the proof, paragraph and chapter. O



Kapitel II

Valuation theory

§ 7 Discrete valuations

Example 7.1 Let P € N prime. For x € Z\{0} let
vp(z) = max{k e N | p* | 2}

Then p*»®) |z, p»@+1} ¢ Example: v5(12) = 2. Write 2 = p*»(*) .2/ where p { 2. For 2eQ”
define

x

(2 = 1) = ).

Y

This defines a map v, : Q — Z, such that
(i) vp(ab) = vp(a) + vp(b) (clear)
ii) vp(a +b0) = min{v,(a), v , since: Write a = p"»\% . a’, b = p"»\?/ . b’. Let w.l.o.g v <
p(a+b (@), vp(b Wi vo(a) g/ b = p»®) . b Let w.lo.g v,(b

vp(a). Then we have
a+b=p»@ . g 4 p® = ) (b/ T d .pupm)—up(b)) _

Hence p*»(®) | a + b and thus vy(a + b) = v,(b) = min{v,(a), v,(b)}.

Definition 7.2 Let k be afield. A discrete valuation on k is a surjectove group homomorphism

vy — (Z,+) satistying
v(z +y) = min{v(z),v(y)} for all z,y e k™, © # —vy.

Remark 7.3 Let R be a factorial domain, k = Quot(R). Let further be p € R\{0} be a prime

element. Then vy, : k* — 7 can be defined as in Example 7.1: Write

:U:e-Hp”P(x), e€ R
pelP
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where P denotes set of representatives of prime elements of R. Then v, is a discrete valuation

on k.

Example 7.4 Let k be a field, a € k, R = k[X] and p, = X — a € k[X]. For f € k[X] define
Vp, (f) = n if f has an n-fold root in a, i.e. f = (X —a)" - g for some 0 # g € k[X]. Then v, is
a discrete valuation on k(X) = Quot(k[X]) satistying v, = 0.

Remark 7.5 There is no discrete valuation on C.

proof. Assume there exists a discrete valuation on C, say v : C* — Z. Since v is surjective,
there exists z € C* such that v(z) = 1.

Let now y € C* such that 32 = z. Then we have

1
1=v(z) = l/(yz) =v(y-y)=vy) +vy) =2vly) < vy = 3 ¢ 7
which is a contradiction. ]

Example 7.6 Let v: Q¥ — Z be a nontrivial discrete valuation. Then there exists a € Z such
that v(a) # 0 and hence we find p € P: v(p) # 0.

If v(q) = 0 for all ¢ € P, then v = v,

Assume we have v(p) # 0 # v(q) for some p # g € P and write 1 = ap + bq for suitable a,b € Z.
Then

0 =v(1) = v(ap+bg) = min{v(ap), v(bg)} = min{ v(a) +v(p), v(b) +v(g)} = min{r(p),v(q)} >0
~—— ~——
=0 (%) =0 (%)

Hence a contradiction, i.e. we have v(p) # 0 for at most one p € P, thus v = v,

(%) obtain that we have v(1) =v(1-1) = v(1) + v(1) = v(1) = 0 and by induction
v(a) =v(1+ (a—1)) = min{r(1),v(a—1)} =0

Proposition 7.7 Let k be a field and v : k* —> 7Z be a discrete valuation on k.
(i) v(1) =v(-1) = 0.
(ii) Oy, :={xe k™ |v(z) =0} v {0} is a ring, called the valuation ring of v.
(11i) my, = {x ek |v(x) >0} u {0} < O, is an ideal in O,, called the valuation ideal of v.
More precisely, m,, is the only mazimal ideal in O,, i.e. O, is a local ring.
(iv) my, is a principal ideal.
(v) O, is a principal ideal domain. More precisely, any ideal I # {0} in O, is of the form
I = (t%) for some d e N and t € m,, with v(t) = 1.
(vi) We have k = Quot(R) and for z e k*: 2z € O, or L € O,.

xT

proof. (i) This is strict calculating, which may be verified by the reader.
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(iii) m, is an ideal, since for z,y € m,, a € O, we have

v(z +y) = min{r(z),v(y)} >0, viax) = v(a) +v(z) = v(z) > 0.

Let now z € O, with v(x) = 0. Then

v (1) — o(1) = v(x) = —v(z) = 0,

hence x € O,f. Thus we have m, = O,\O,S and the claim follows.

(iv) Let t € m,, such that v(¢) = 1. Then for € m, let v(z) = d > 0. Then we have
—d 1
I/(:L"t )zl/(w)JrV i =d+0—-d=0

Define e := z-t~% € 0. Then z = e - t?, hence m, = ().
(v) Let {0} # I # O, be an ideal in O,. Let d := min{v(z) | z € I\{0}} > 0.
'2’ Let x € I such that v(z) = d. By part (iv) we have 2 = e - t% for some e € O, hence
we have t? € I; thus (t¢) < I.
'C’ Let now y € I\{0} and write y = e - t*® for some e € O} and v(y) > d. Then
y =t e - t*@=4 hence y e (t%) and thus I < (t%).
(vi) If v(z) = 0, then x € O,. If v(z) < 0, we have

)y (1) =v(l) —v(z) = —v(xz) >0, hence 1 em, € O,
X

x

which we wanted to show. ]

Definition 7.8 An integral domain R is called a discrete valuation ring, if there exists a discrete

valuation v of k = Quot(R) such that R = O,,.

Proposition 7.9 Let R be a lokal integral domain. Then the following statements are equivalent.
(i) R is a discrete valuation ring.
(i) R is a principal ideal domain.

(11i) There exists t € R\{0} such that every x € R\{0} can uniquely be written in the form
z=e-t for someee R*, d >0

proof. '(i) = (ii)” This follows by 7.7.

'(ii) = (iii)” We know that principal ideal domains are factorial. Let ¢ € R be a generator of the
maximal ideal m of R. Then ¢ is prime, since any maximal ideal is also prime. Let now
p € R\{0} a prime element. Then p ¢ R*, hence p € m, thus we can write p = t - = for

some x € R. Since p is prime, hence irreducible, we have x € R* = (p) = (t). Thus we
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have p = t and we have only one prime element in R. The unique prime factorization in
factorial domains gives us « = e - t% for some e € R* and d > 0.
"(iii)=(i)’ For x = e -t € R\{0}, e € R*,d > 0 define v(x) = d. We claim that v is discrete

valuation. We have
vizy) =v (etd : e/td/> =v (ee’td“l/) =v (e”thrd/) =d+d.
Let w.lo.g. d < d'. Then
viz+y) =v (etd + e'td/> =v (td (e + e'td,_d)) > d = min{d, d'}

which we extend to

Y
This is well defined: For = Z—j we have xy/ = 2’y and v(2'y) = v(z)+v(y') = v(2') +v(y),
thus .
x , , T
vi=)=ve) vy =v@E)-vE)=v|=).
(2) = vt =) =) - vt) = (%)

Finally we have v(t) = 1, hence v : k* — Z is surjective. Thus v is a discrete valuation
on kand R = 0O,,. ]

Definition + proposition 7.10 Let R be a local ring with maximal ideal m.

(i) k:= R /m is called the residue field of R.
(ii) m /m?2 has a structure of a k-vector space.

(iii) If R is a discrete valuation ring, then dimg(m /m?2) = 1.

proof.  (ii) For a € R, x € m define aZ = ax, where a, T are the images of a,z in k.

This is well defined: Let o’ € R with o/ = @ and 2/ € m with 2/ = Z. We have to show that

dr’ =ax < da’ —arem?

We have o/ = @, hence @' = a + y for some y € m. Analogously we have 2/ = T, hence

2’ = x+ for some z € m2. Thus we have

/

de' = (a+y)b+2) =ax+az + zy + yz = ax mod m?,

which finishes the proof. ]
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§ 8 The Gaufs Lemma

Let R be a UFD (unique factorization domain), P a set of representatives of the primes in R

with respect to associateness, i.e. x ~y < y = u-x for some u € R*. Every x € R\{0} has a

unique factorization

x:u-np”p(m), vp(z) =0 forpe P, ue R®
peP

where v, : kX — Z is a discrete valuation on k& = Quot(R).
Definition + proposition 8.1 Let R be a factorial domain, £ = Quot(R) and
n .
f=>Y X e k[X]\{0},  an,#0.
i=0

(i) For pe P let vp(f) = min{vy(a;) | 0 < i < n}.
(i) f is called primitive, if v,(f) = 0 for all p € P.
(iii) If f is primitive, then f € R[X].
(iv) If f € R[X] is monic, i.e. a, = 1, then f is primitive.
)

(v) There exists ¢ € k* such that ¢ - f is primitive.

proof. (iil) If f is primitive, we have mini<j<,{vp(ai)} = 0, i.e. vp(a;) = 0 for all 1 < i < n.
Thus a; € R and f € R[X].

(iv) If a; € R we have vp(a;) = 0 for all 1 < ¢ < n. Moreover vy(a,) = v,(1) = 0, hence
vp(f) = mini<;i<n{vp(a;)} = 0. thus f is primitive.

(v) For v,(f) := d choose ¢ := p~@ € k*. Then
vple- f) = wple) +vp(f) = vp(p™") +d = —d +d =0,
thus ¢ f is primitive. ]
Proposition 8.2 (Gaufi-Lemma) For f,g € k[X] and p € P we have
vp(f - 9) = vp(f) + vp(9g)-

proof. Write

m+n

n m k
F=YaX  g=20X, fog= ) aXt =) b
i=0 j=0 k=0 i=0
case 1 Assume m = 0, i.e. ¢ = bg € k*. Then ¢ = ay - by, hence

vp(ck) = vplak) + vp(bo).
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Then we obtain

vp(f-g) = min vp(cp) = min {vp(ag)+vp(bo)} = vp(bo)+ min {vy(ar)} = vp(g)+vp(f)

0<k<n 0<k<n 0<k<n

case 2 Assume v,(f) = 0 = v(g), i.e. f,g are primitive. Clearly v,(fg) = 0. We have to show:

vp(fg) = 0. Let iy := max{i | vp(a;) = 0} and jo := max{j | v»(b;) = 0}. Then

to+Jjo i0—1 io+Jjo
Ciotjo = D, @ibigtjo—i = ) @ibigtjo—i Tigrjo + D, @ibigtjo—i
=0 =0 i=10+1
(A4) (B)

We have v, (aibj,) = Vp(aiy) + vp(bj,) = 0. We have ig + jo — i > jo, hence v, (bjy4j,—i) =1

for 0 < i <ig—1. Then

i0—1
(A) =1y <Z aibio-i-jo—i) > min {vp(abig+jo-1)}

0<i<ip—1
i=0 110

= min {vp(a;) + vp(big+jo—1)}

0<i<ip—1
= Ogigiigl_l{yp(bio-i-jo—l)}
> 1
t0+Jjo
vp(B) :Vp< Z aibioﬂo_i) > 1.
1=1p+1

Since we have
0= Vp(aiobjo) = min{’/p(cio+jo)v VP(A)a VP(B)} = Vp(cio+jo) =0
we get vp(Cig+jo) = 0. Hence we obtain

vp(fg) = minfwp(ci) | 0 <@ <m+n} = vp(cigrjo) = 0.

case 3 Consider now the general case, i.e. f,g are arbitrary. Multiply f and g by suitable

constants a and b, such that f := af and § := bg are primitive. Then by the first two cases

ll)~g> Ly, (ii) +u,(f5) £ v, <i) + v <ll)> +\Vi(,§)/+\yi(?z

we have

w(fg) = v %

which finishes the proof. O



§ 8 THE GAUSS LEMMA 47

Theorem 8.3 (Eisenstein’s criterion for irreducibility) Let R be a factorial domain, p € P and
n .
f=Y a:X" eR[X]\{0}
i=0

Assume that f is primitive and we have

(1) vp(ao) =1,
(1t) vp(ai) =1 ora; =0 for1<i<n-—1 and

(iit) vp(a,) =0
Then f is irreducible over R[X].

proof. Assume that f = g - h with some g, h € R[X]. Write

T S
g:ZbiXi, h:Zcin, withr +s=mn
i=0 j=0
Then we have ag = bocg. W.lo.g. vp(bo) = 1 and v,(co) = 0. Further a, = b,c,, thus we must
have vy (b,) = v,(cs) = 0 for vp(a,) = 0. Let now

d:=max{i | vp(bj) = 1for 0 < j < i}

Obviously 0 < d < r — 1. Consider

d

agy1 = bgyico + Zbicd+1—i-
- =0
=: [N

=:B
We have
Vp(A) = Vp(bd+1) + Vp(C()) =0+0=0,
vp(B) = min {vp(bicgr1-1) =1

0<i<d

and thus vp(ag41) = 0. But this impliesd+1=n<n—1=d<r—1=n<r=n=r. Then

we have s = 0, thus h = ¢g is constant. Further for ¢ € P we have

0 = vy(f) = vylgco) = vylg) +valco)

i.e. v4(cg) = 0, hence ¢y € R* and f is irreducible. ]
Theorem 8.4 (Gaufl) Let R be a factorial domain. Then R[X] is factorial.
proof. Let f e R[X]\{0} € k[X] where k = Quot(R). Since k[X] is factorial, we can write

f:c‘fl"'fna fiek[X]prime,cekX
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W.lo.g the. f; are primitive, otherse multiply them by suitable constants. In particular we have
fi € R[X]. Note that ¢ € R: For p € P, we have

n

0=wp(f) = vp(c) + Z vp(fi) = vp(c).
=1
Write ¢ = € p1 - - - pr with some € € R* and p; € P.Then by
Claim (a) f; € R[X] are prime for 1 <i < n.
Claim (b) p; € R[X] are prime for 1 <1

we have found a factorization of f into prime elements and hence R[X] is factorial. Now prove

1< T

the claims.
(a) Let g,h € R[X] such that gh € (f;) = fiR[X].
May assume that g € f;k[X], i.e. g = f;g for some g € k[ X]. For p € P we obtain

0 < vp(9) = vp(fi) +vp(9) = vp(9).
o
Thus we get g € R[X], which implies g = f;g € fiR[X] = (f:).
(b) Since 7 : R — R /(p) induces a map ¢ : R[X] — R /(p)[X] with ker(¢)) = pR[X] we

have
R[X] /pR[X] = R /pR[X].

Since R /pR is an integral domain, (p) is prime. O
Corollary 8.5 Let k be a field. Then k[X1,...X,] is factorial for any n € N.

Corollary 8.6 Let R be a factorial domain, k = Quot(R). If f € R[X] is irreducible over R[X],

then f is irreducible over k[ X].

proof. Let 0 # f = c- f1-+ f, be decomposition of f in k[ X], i.e. c € k* and f; € k[ X] irreducible
for 1 <i < n. We may assume that the f; are primitive, hence contained in R[X], since we can
multiply them by suitable constants. We still have to show ¢ € R. Since f € k[X], i.e. vp(f) =0

we have

() = vple- fioe f) = (@) + 3 yl(fi) = () = 0

Thus ¢ € R. Then the decomposition from above is in R - but since f is irreducible in R, we have

n=1and ce R*. ]
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§ 9 Absolute values

Definition 9.1 Let k be a field. A map
|- [k — Rxo

is called an absolute value, if
(1) positive definiteness: |x| =0 < x =0
(ii) multiplicativeness: |xy| = |z| - |y| for all z,y € k.

(iii) triangle inequality: |z + y| < |z| + |y| for all z,y € k.

Example 9.2 (i) The 'normal’ absolute value | - |5 on C and on any of its subfields denotes
an absolute value.

(ii) Let v} — Z be a discrete valuation, p € (0,1). Then

VD) g0
||, k— R, z+— P

0 z=0
is an absolute value on k, since
(1) Trivial, since |0] = 0 and p® # 0 for any z € Z.
(2) Clearly |zyl, = p@¥) = pr@+vW) = @) W) = ||, |yl,.
(3) Further

oyl = p Y < p O = max{p" @), p" W} = max{|zly, [y} < lalu+lyl

(iii) For the p-adic valuation v, on Q we choose p := ;1). Then |z|, = p~(*) is an absolute

value.

Remark + definition 9.3 Let k be a field, | - | an absolute value on k.
(i) 1] =|—1]=1and |z| = | — 2| for all z € k.

(ii) The absolute value is called trivial, if |z| = 1 for all x € k.

proof. We have |1| = |1-1]| = |1] - |1], hence |1| = 1. Moreover | — 1| = |1 - (=1)| = 1| - | — 1],

hence | — 1| = 1. For x € k we have | —z| = |(—1) - | = | — 1| - |z| = |=z|. ]

Proposition + definition 9.4 Let k be a field with char(k) = 0, i.e. £ 2 Q and |- | an absolute
value on k.

(i) | - | is called archimedean, if |n| > 1 for all n € Z\{-1,0, 1}.
(ii

) | - | is called nonarchimedean, if |n| < 1 for all n € Z.
(iii) |- | is either archimedean or nonarchimedean.
)

(iv) The p-adic absolute value on Q is nonarchimedean.
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proof of (ii). Since |n| = | — n|, it suffices to check n € N. Let a € N € k with |a| > 1. Assume
there exists b € Noj with |b] < 1. Write

N
a= Z ;b a; €{0,...b—1}, |N| = |log,(a)].
i=0

Then we have

[logy, (a)]
lal < 25 lailltl" < logy() | max = {lail} =: logy(a) e,

o <i=llogy (a
la"| < logy(a™)-¢ = n-logy(a)-c

and |a"| grows linearly in n. Likewise we get for n € N

no_
at =) ;

logy,
1=0

(a™)]
agn)bi, al™ e {0,...6—1},

la”| = la]* < (logy(a) - c)"

which grows exponentially in n, which is a contradiction. Hence the claim follows. O

Remark 9.5 An absolute value |- | on a field k induces a metric
d(l’,y) = |ZL‘—y|, xvyEk
Therefore, k as a topology and aspects as ’convergence’ and ’cauchy sequences’ are meaningful.

Definition + remark 9.6 (i) Two absolute values | - |1,] - |2 on k are called equivalent, if
there exists s € R, such that |z|; = |z|§ for all z € k. In this case, we write |- |1 ~ |- |2.
(ii) Two absolutes values | - |1, |- |2 are equivalent if and only if the induce the same topology

on k.
proof. Is left for the reader as an exercise.

Example 9.7 The p-adic absolute values on Q are not equivalent for p # ¢ € P. Consider

n n—0

p"p=p " —— 0, Ip"lg =1 forallneN

Moreover we have | - [p # | - |, since by the transittivity of equivalence of absolute values, we

have

[l ~ oo ~ [+ g

which is not true.
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Theorem 9.8 (Ostrowski) Any nontrivial absolute value | - | on Q is equivalent either to the

standard absolute value | - |x on Q or to a p-adic absolute value | - |, for some p € P.

proof. case 1 Assume |- | is nonarchimedean. We want to show, that in this case |- | ~ |- |, for
some p € P. Since | - | is non-trivial, there exists « € N such that
‘x’ = Hp”?(x) = H ‘p”’p(x) #1
peP pelP

for at least one z € Q, hence, we have |p| # 1 for at least one p € P, i.e. |[p| < 1. Assume

there is another prime ¢ # p with |¢| < 1. Then we find N € N, such that

1
N <

N
- <

N

Moreover, since p”, ¢V are coprime, we can write
l=a-pV +b-¢" for suitable a,b € Z.
So the contradiction follows by

1=|1]= |apN +qu| < af |pN| + || |qN| <1,

<t <t
hence we have |¢| = 1 for any ¢ # p € P. Let now s := —log,, |p|. For x € Q* we obtain
|z| = Hﬁ”ﬁ(w) - H 1577 = [p|r®) = p=se(@) = (p*l/p(fv))s = |z[;
peP peP
thus we have |- | ~ |- [p.
case 2 Let now |- | be archimedean. We now have to show || ~ |+ |o. For n € N5o we have

1<|n|=

n n
Z1‘<Z|u:n.
i=1

i=1
For any a € N>o we find s := s(a) € R such that

la| = [al% = a®
namely
s = log, [a]) = 212D
¢ log(a) -

Claim (a) We have
log(Jal) _ log(|2])

log(a)  log(2)
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Since now s is independent of a, we have | - | ~ | - |o. Prove now the claim:

(a) For n e N write

N
- log(2
2" = ;]O%GZ with a; € {0,...a —1} and N <log,2" =n- 1028.
Then we have
2" = 2 < 3} Jaul lal' < alV < (N +1)a|al",
i=0 — >
S <a
hence we get
n-log(|2]) < log(N + 1) + log(a) + N log(|a|)
log(2) log(2)
<1 : +1)+1 +n- -1 :
o (1 gy + 1) 1) 0 o

Multiplying the equation by % : @ gives us

log(2) _ 1, (. lo(2) log(Ja])
log(2) 1g< 1og<a>“>+ log(a)

~

and thus

log([2]) _ log(lal])
log(2) — log(a)
Swapping the roles of a and 2 in the equation above gives us the other inequality.

Hence we have equality, which proves the claim. O

Proposition 9.9 Let |- | be a nonarchimedean absolute value on a field k.
(i) |z + y| < max{|z|, |y|} for all z,y € k.
(i1) If |x| # |y|, then equality holds in ().

proof. (i) If x = 0, we have |y + z| = |y| < max{0, |y|} = max{|z|, |y|}. Thus assume z # 0.
We have |z + y| = |z|[1 + £]|. It suffices to show |z + 1| < max{1, |z|}. Then we get

x X
ool = bl 1+ ] < bl o { || 11} < maxla, o)

For n € N we have

(x+1)" = Zn: (:) ",

k=0
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Then we have

e+ 1" = [(x+ 1" =

hence
lz+1| < Vn+1 for all n e N.

Thus |1 + 2| < 1. Since we clearly have |z + 1| < |z|, we all in all have
|z + 1| < max|{|z|, 1}.
(ii) Let z = z + y and assume |z| < |y|. We have to show |z| = |y|. Assume |z| < |y|. Then
(%
yl = |z — 2| < max{|z], | = =[} <[y ¢
and the proof is done. O

Proposition 9.10 Let |- | be an a nonarchimedean absolute value on a field k. Then

(i) We have a local ring
B1(0) := {z € k||z| <1} =: Oy

with maximal ideal
B1(0) := {z € k||z] < 1} =:my,

(ii) Ewvery point in ball is its center.
(1ii) Balls are either disjoint or one of them is contained in the other one.

(iv) All triangles are isosceles.

proof. (i) By 9.8(i), B1(0) is closed under Addition. The remaining is calculating.
(ii) Let z € B.(x). To show: B,(z) = B,(z).

'’ Let y € B.(2), i.e. we have |y — z| < 7. Then
ly—z|=ly—2z+z—a| <max{ly —z|,|z—z|} <r = yeB. ().

Thus we have B,.(z) € B,(z).
'D’ Follows by symmetry.
(iii) Let B := B,(z), B := B (z') and ye Bn B'. W.lLo.g. r <1’

Then for z € B we have

lz—2|=|z—a+2—y+y—2| <max{|z — x|, |z — y|, |y — 2’|} = max{r,r, 7"} =1’
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which implies z € B’. Hence we have B < B'.

(iv) Follows from 9.8(ii). O

Corollary 9.11 Let k be a field, | - | a nonarchimedean absolute value on k.

(i) All balls are closed and open, considering the topology on k induced by the metric d(x,y) =
|z —yl.

(ii) k is totally disconnected, i.e. no subset of k containing more than on element is connected.

proof. (i) Let B := B,(x) be a closed ball for some z € k, 7 € R>q. Then B topologically clearly
is closed . Let now y € B. Then B, (y) < B by 9.9(ii), i.e. B is open.
Let now B := B,(x) be an open ball and y € k£ a boundary point. Thus for all s > 0 we
find z € Bs(x) n B, (z). Choose s < r. Then

d(z,y) < max{d(y, z),d(x, z)} < max{s,r} =r.

Thus y € B, (x), hence B,(z) is contains its boundary and is closed.

(ii) Let X < k be a subset with x # y € X. Then for r := |z — y| > 0 we get
X = (Bg (z) N X) o (X\Bg (a:))

which is a decomposition of X into two nonempty, disjoint open subset, i.e. the claim

follows.

Example 9.12 (Geometry on (Q, | - |p)) The unit disc in (Q, |- [p) is

{5eQlpto} =2

The maximal ideal is
a P
{$ealptvpla} =p 24 =B (0)

1
p
We have
1
{xe(@‘]m|p<1}={me(@“x|o@<p}

Moreover

) [y =2 /o2 =Fy = {0,1,....p— 1}

B1(0) is the disjoint union of the Bi (i) for 0 < i < p — 1, where Bi (i) = i + pZ,).
P

hS]
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§ 10 Completions, p-adic numbers and Hensel’s Lemma

Remark 10.1 Let |- | be an absolute value on a field k. Let
C := {(an)nen | (an) is Cauchy sequence in (k,| - |)}
be th ring (!) of Cauchy sequences in k and
N = {(an)neN | nlglgoan = O} <C

the ideal (!) of Cauchy sequences converging to 0. Then
(i) N is a mazimal ideal.
(1) k' :=C /N s a field extension of k.
(i11) |(an)nen| := limy, o0 (an) € Rsq is an absolute value on k' extending | - |.

(i) k' is complete with respect to | - |.

Remark 10.2 If || is nonarchimedean, for every Cauchy sequence (an)neny ¢ N we have |an,| =

lan| for all m,n > 0.

proof. Since (ay) ¢ N, 0 is not an accumulation point of (a,). = |a,| = € for some € > 0 and

all n = ng(e) =: ng. Thus for n,m > ng we have |a,, — a,p,| < €. This implies by 9.8 (ii)
|an — am| < max{|an|, lam|} = |an| = |aml,

which was the claim. O

Definition 10.3 Let £k = Q, |-| = |- |, for some p € P. Then the field £’ on 10.1 is called the field
of p-adic numbers and denoted by Q,. The valuation ring is called the ring of p-adic integers

and is denoted by Z,,.

Remark 10.4 (i) Z c Z,) < Zy.
(i) The mazimal ideal in Zy is pZy.
(iit) Zp [pZ,, =L [pZ = Fp.

(v) Zy is a discrete valuation ring.

proof. (i) The first inclusion is clear. For the second one consider z = € Z(,). Then by

definition of localization we have p { s and hence
r_ Il
o = |5 = 5 =l <1

sl Js|
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and thus z € Z,. Now prove that Z is dence in Z,: Let x € Z, with p-adic expansion
w .
x=2aipl, a; €{0,1,...,p—1}.
=0

Define a sequence (zp)nen by

n
Ty 1= Z a;p' € Z.
i=0

Then we have

0
o _ _ in _ |+l _ —(n+l) "0 0
2= | \2\ max {[p'f} = |p" | = (D) 22

and hence Z is dence in Z,.

(ii) Recall that the maximal ideal is given by
m={reZ, | |z|<1} =pZ,

'C’ Let x € m, i.e. |z] < 1. Thus we have |z| < |zl)‘ This implies

1

p iz <1 = plreZ,

and thus p~!

x = y for some y € Z,. Then we have x = py € pZ,,.
D’ Let © € pZ,,, i.e. we can write x = py for some y € Z,. Then |z| = |py| = |p|ly| <1
and hence x € m.

(iii) Consider the surjective homomorphism
n .
Vp Ly —L/pZ, x= Zaz‘pl = ag.
i=0
We have
ker(¢p) ={z €Z, | ap=0 mod p} = pZy,

thus we get Zp /p7,, = Z /pZ by homomorphism theorem.
(iv) The absolute value |- | = |- |, on @, induces a discrete valuation v on Q. With respect to

this valuation we have
Op={z€Qy | v(@) 20} u{0} ={zeQ, | [z|<1} =17,

which finishes the proof. O
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Proposition 10.5 (i) Any x € Z), can uniquely be written in the form
m .
x=2aipl, a; €{0,1,...,p—1}.
i=0
(i1) Any x € Q, can uniquely be written in the form

o0
T = Z aip’, meZ, a;e{0,1,...,p—1}, ap # 0.

1=—m

proof. (i) We first obtain, that any series

w .
Zaipz, a;€{0,...,p—1}
1=0

converges, since for n > m we have

n m m m
i ' ' +1 i—(m+1 +1
Dlap’ = Ylaip'| = | > aip’| = ™| D] apT Y < p .
=0 =0 i=n+1 i=n+1
~ R
<1

uniqueness Let

o0 o0
szasz:szpzv aiabie{oala"'>p_1}
=0 =0

representations of x € Q,. Assume them to be different and define i, := min{i € Ny |
a; # b;}. Then
>aip'=) bip'
i=0 i=0

0 =

oe} [oe}
P (ai, — big) +p1°+1‘< D1 ap ot -y bz‘pl(IOH)) ‘

—A i=19+1 i=ig+1

We obtain v,(A) = p~® and

so all in all

0= |+ pt - B) "X max(p i, p D) = o 4.

existence Look at T € Z, /pr =TF,.

Let ag be the representative of z in {0,1,...,p — 1}. Then we have

|t —ap| <1 < |z—ag| <

a=E
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In the next step, let a; be the representative of %(x —ap) in {0,1,...,p — 1}. Then

|

1
I;(:U—ag)—al |z — ap — a1p| <

1
p

and thus |z — ag — a1p| < & . Inductively we let a,, be the representative of
pl<; y p
1 B 1 n—1 '
—n(x—ao—alp—...—an_lp" 1) =—|z- Z a;p’
p p i=0
in {0,1,...,p— 1}. Then we have
n—1 . _ 1
€T — a;p'| <
= v pn+1
and finally
n—1 1 [o's)
. . 7 . _ _ . 7
nh_I)IOIO x — Zazp <nh_r>rolop—n+1 =0 = :U—Za,p.
i=0 =0
(i) If |x| = p™ for some m € Z, we have
- p™| = d| - [p"| =p™ -p™ =1, e x-p" e,
By part (i) we conclude
a0
xpm_Zalpa QO#O
i=0
Thus we have
1 - 1 o0 ; oo
rT=—""T D :Tn'Eaip = 2 Ai+mD
p o i=—m
which was the assertion. ]

Remark 10.6 What is —1 in Q,? We have ap = p — 1, since p—1—(—a) = p = 0. a3

is the representative of %(—1 —(p—1)) = —1, ice. ay = p — 1. ay is the representative of
1% (=-1—=(p—1)=(p—1)p) = —1, i.e. ag = p—1. Inductively we have a, = p—1 for all n € Ny,
so we get
o0 0
~1 = Ylap' = Yp-1)p
=0 =0

Moreover we obtain
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Remark 10.7 Let

=Y ap, y=bp
=0 i=0

p-adic integers. Then

o0
$+y=20ipi
i=0
with coefficients
o ap + by if ag+by<p
" ag+bo—p ifag+bg=p
a1 + by if ag+by<p and a;+by <p
_<a1~|—b1—p if ag+by<p and a1 +by =p
ar a1 +b+1 if ag+byp=p and a1 +b1+1<p
a1+bi1+1—p if ag+bg=p and a1 +b1+1=p

Inductively let
0 o a+b+e_1<p
€ =0, € 1= ' o fori=1
1 if a;+b;+¢_1=p

Then we have

a; + b; + € if a;+bi+e<p
C; =
a; +b;+e€—p if a;+bi+e€ =D

Remark 10.8 (i) /p ¢ Q,, since |\/p| = +/|p| = \/% € (%, 1), which is not possible.

(ii) Let a € Z; with image a € F \IF;,<2, where

F;Q ={xeF,| there exists y e F, : y* = x}

denotes the set of squares. Then /a ¢ Q,. Assume a is a aquare, i.e. b2 = a. Then

bl =+/la| =1 = beZ,

But then b e F, satisfies b= a, which is a contradiction, since a ¢ IF;Q.

(i11) Let now @p be the algebraic closure of Q, with valuation ring Zp and mazimal ideal my,.
Then Zp [m is algebraically closed. Moreover Q, is complete with respect to | - |,. The
completion C, of @p 1s complete and algebraically closed, but:

(1) |- |p is not a discrete valuation.
(2) Z, is not a discrete valuation ring.

(3) my, is not a principal ideal.
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Theorem 10.9 (Hensel’s Lemma) Let

f= i a X' eZ,[X], f= iaﬁ-xi e F[X]
=0 i=0

where f is the reduction of f in F[X]. Suppose that f = f1 - fo with fi1, fo € Fp[X] relatively
prime. Then there exist g, h € Z,| X], such that

f:gh‘7 §=f1,E=f2, deg(fl):deg(g)

proof. Let d := deg(f), m := deg(f1). Then deg(f2) < d —m. Choose go, ho € Zp[X] such that
90 = f1,ho = f2,deg(go) = m,deg(hg) = d—m. Strategy: Find g1 = go + pc1, h1 = ho + pdy with
some c1,d; € Zp[X], such that

f—ghi € p*Z,[X].

Therefore we have a

Claim (a) For n > 1 there exists ¢, dy, € Z,[X| with deg(c,) < m,deg(d,) < d —m and
f—gnhne€ p"+1Zp[X], where g, = gn_1 +p"Cn, hn = hp_1+p"d,.

Assuming (a), write
m

d—m
In = Z gn,iXZa hn = 2 hn,in-
i =0

By construction, the (g ;) converge to some oy € Z, and the (hy,;) converge to some f; € Zj,.
Let

m d—m
g .= ZaiXi, h:= Z B X"
=0 1=0
Observe, that deg(g) = m,deg(h) = d — m. Obviously we have
f=g-h

It remains to show the claim.

(a) cp,d, have to satisfy

f - gnhn = f - (gnfl +pncn) : (hnfl +pndn)
= f - gnflhnfl - pn : (gnfldn + hp—1cn + pncndn)

!
€ p"Z,[X]
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where f — gn—1hn—1 € p"Zp[X] by hypothesis. We get

1
Jn = ﬁ(f — gn—1hn—1) = cphp—1 + dpgn—1 mod p (*)

Since f1, f2 are relatively prime and g; = g, mod p for any j, k, we find integers a,b € Z,
such that
afi,bfo=1 =— agp—1+bh,—1=1 mod p.

Multiplying the equation by fn gives us

fn = afn Gn—1 + bfn hn—1 mod p (xx).
— ——

::(in =:Cpn

Further Z,[X] is euclidean, thus we can choose gy, € Z,[X|, deg(ry) < m such that

bfn = Qqngn—1 + Tn.

By (%) we have
gn—1 (afn + thnfl) +rn = fn mod p.

Let now ¢, = rn,d, = a fn + gnhp—1. All the terms are divisible by p. Then
dn = afn + thn—l mod D

Thus (%) holds and we have

<d <m <d—m
o - —_——
deg(dn) = deg(dn) < deg fn — Cn hpo |- deg(gnfl) <d-m
. ~ J \ )
<d =m
since Engn_l = fn — Cnhn—1. Thus, the claim is proved. O

Corollary 10.10 Let p € P odd. Then a € Z, is a square if and only if a € F is a square.

Proposition 10.11 a € Q is a square if and only if a > 0 and a is a square in Q, for all p € P.

Remark: This is a special case of the ’Hasse-Minkowski- Theorem’.
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Kapitel IT1

Rings and modules

§ 11 Multilinear Algebra

In this section, R will always be a commutative, unitary ring.

Reminder 11.1 (i) An R-module is an abelian group (M, +) together with a scalar multi-
plication
tRxM-— M

with the usual properties of a vector space, i.e. for any m,n € M,r,s € R we have
(1) r-(s-m) = (rs)-m
(2) (r+s) - m=r-m+s-m
B)r-(m+n)=r-m+r-n
(4) 1g-m=m
(ii) A map ¢ : M —> M’ of R-modules M, M’ is called R-linear or R-module homomorphism,
if
p(r-m+s-n)=r-¢(m)+s-p(n) for all r,s € R,m,n e M.

(iii) A subset S € M of an R-module is called an R-submodule of M, if S is an R-module.
(iv) R itself is an R-module, the submodules are the ideals of R.
(v) If ¢ : M — M’ is R-linear, then

ker(¢) = {me M | ¢(m) = 0},
im(¢) = {m' € M" | ¢(m) = m' for some m € M}

are R-submodules.

(vi) If M € M’ is a submodule, then the factor group M /M’ is an R-module via
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(vii)

IIT RINGS AND MODULES

For an R-linear map ¢ : M — M”, we have

im(¢) = M /[ker(¢).

(viii) An R-module M is called free, if there exists a subset X © M, such that every m € M has

a unique representation

m = Z Gy - T, ay € R, a; # 0 only for finitely many z € X.
zeX
In this case, X is called the rank of M.
Not every R-module is free: Indeed let 0 < I < R be a proper ideal. Then R /] is not free:
Let X € R, such that X < R /J generates the R-module R /J. Let x € X and a € I\{0}.
Then we have

2 T=a-x2=0=0-2=0-7,

hence we have found two different reapersentations of 0. Thus R /T is not free.

For any n € N, nZ is a free module

If I < R is not a principle ideal, then I is not a free R-module., since for x,y € I with
y ¢ () we have zy — yz = 0. Again we have a nontrivial representation of 0 and I is not

free.

Definition + proposition 11.2 Let R be a ring, M, M’ R-modules.

(i)

(if)

The set of R-module homomorphisms
Hompg(M,M') = {¢: M — M' | ¢ is R-linear }

is again an R-module.
M* = Homp(M, R) is called the dual module of M.

Let now

0— M - M- M —0

be a short exact sequence of R-modules M, M', M”, i.e. a is injective and [ is surjective.

(iii)

(iv)

Then we have a short exact sequence

0 — Homp(N,M") % Homp(N,M) 2% Hompg(N,M")

¢ — aoceg, ¢ — oy
We have s short exact sequence
0 — Homp(M",N) 5 Homp(M,N) <% Homp(M',N)
¢ —  ¢of, ¥ - Yoa
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(v) N is called a projective module, if B, is surjective for all short exact sequences as in (iii).

(vi) N is called an injective module, if o* is surjective for all short exact sequences an in (iv).

proof. (i) This is clear: For all ¢, ¢1, po € Hompg(M, M) and a € R we have

(01 + ¢2) (2) = ¢1(z) + 2(z),  (a-9)(z) =a- ¢(x)

(i) ay is R-linear: For any ¢1, ¢ € Homp(N, M’) and x € N we have

ax(dr+ @2)(x) = (ao(d1+¢2)) (x) = ald(z) +d2(x)) = a(pi(e)) + o (da(x))

and thus

ax(P1 + 92)(2) = ax(P1)(2) + ax(P2) (@) = (u(d1) + ax(e2)) (2).

Moreover, ay is injective: Since « is injective we have ay(¢)(z) = a(¢(x)) = 0 if and only
if ¢(x) =0 for all x € N, thus ¢ = 0. Now we still have to show ker(8,) = im(ax).

D>’ For ¢ € Hompg (N, M’) we have By(co¢) = Boaogp=00¢=0,ie aod = as(d)e
ker(fBx).

'c Let ¢ : N — M, ¢ € ker(B4), i.e. Bo¢ = 0. We have to show, that there exists ¢’ €
Homp(N, M') such that ¢ = a,(¢') = ao¢’. Let x € N. Then ¢(z) € ker(3) = im(«).
Then there exists z € M’ such that ¢(z) = a(z) and z is unique, since « is injective.
Define ¢'(x) := 2. Then we have oo ¢/ = ¢. It remains to show that ¢ is R-linear.
We have ¢/ (x1 + x2) = z and with «(z) = ¢(z1 + z2) = ¢(21) + ¢(x2) we again have

a(z) = (z1) + ¢(z0) for some suitable, but unique 21, 22 € M’. Since we have
a(z) = ¢(z1 + 22) = ¢(21) + ¢(22) = a(21) + a(22) = a(21 + 22)
and a is injective, we have z = 2| + 2o, thus
(w1 +x2) =2 =21+ 20 = ¢ (1) + ¢ (22).
Moreover for a € R we have ¢/ (az) = w with a(w) = ¢(az) = a-$(z) = a-a(z). Thus
o (¢/(az)) = a(w) = dlaz) = a-¢(z) = a-0lz) = a-a (¢'(x)) =2 ¢ (az) = a-¢'(2),
which proves the claim. 0

Remark 11.3 (i) An R-module N is projective if and only if for every surjective R-linear
map B : M — M" and every R-linear map ¢ : N —> M" there is an R-linear map
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é: N —> M, such that the diagram below commutes, i.e. ¢ = 30 .

M
7
7
- 7
¢ 7 5
Ve
Ve
7
7
N Ml/
@

(i) Free modules are projective.
Definition 11.4 Let M, My, My be R-modules. A map
d: M x My — M
is called bilinear, if the maps
Oy 0 My —> M, y— O(x0,y), Oy, : My — M, x— P(x,y0)
are linear for all xg € My and yg € Mo.

Definition 11.5 Let Mj, Ms be R-modules. A tensor prodcut of M7 and Ms is an R-module T'
together with a bilinear map
T M1 X MQ — T,

such that for every bilinear map ® : My x My — M for any R-module M there is a unique

linear map ¢ : T'— M, such that the following diagram becomes commutative.

M1XM2 T T

Remark 11.6 Let (T,7) and (T',7') be tensor products of R-modules My and My. Then there

exists a unique isomorphism h : T — T', such that
' =hor.

proof. Consider
M1 X M2 T T

Ng%

Existence and uniqueness of the linear maps g and h come from Definition 11.5. It remains to

show, that ho g = idy and go h = idy.
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In order to do this, consider the following diagramm.

M1XM2 T T
4
/
/ 4 1
T ¥4 goh =idp
T

We have (goh)T = go (hot) = go7' = 7. By the uniqueness we get idy = g o h. Analogously

we get id7» = h o g which finishes the proof. O

Corollary 11.7 The tensor product (T, ) of R-modules My, My is unique up to isomorphism.
The standard notation is
T = My ®r M, (z,9) =r®y

Example 11.8 Let M, M> be free R-modules with bases {e;}ier,{f;}jes. Let T be the free

R-module with basis {gi;} @ jjer~.s and
T: My x My — T, (e, fj) — gi; forall (i,5) el x J,

i.e. for elements in M7, My we have

T (Zaiez‘, ijf;) = Z a;b;gij
(4,

icl jed )eIxJ

Then (7', 7) is the tensor product of Mj, M, since: Let ® : M} x My — M be bilinear. Define

Obviously ¢ is linear and satisfies ® = ¢o7. Now consider a special case and let |I| = n, |J| = m.
Identify M; via (eq,...e,) with R™ and My via (f1,... fn) with R™. Then T is identified with

R™™ via

0 .0 0
gij = Eij = 1
0 .0 0

where the only nonzero entry is in the i-th row and j-th column. Then 7 : R” x R™ — R™*™
is given by
al b1 a1b1 e albm aq

of : [=] : 2 N N R

an bm, anbi ... apbm an

where the last multiplication is the usual multiplication of matricees.
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Theorem 11.9 For any two R-modules My, Ms there ezists a tensor product (T,7) = (M; ®r
M, ®).

proof. Let F be the free R-module with basis M7 x Ms and @ be the submodule generated by

all the elements

($+$/,y)—($,y)—($/,y), (x,y+y')—($,y)—(:r,y'), (ax7y)_a(x7y)’ (x,ay)—a(x,y)

for a € R,z,2' € My,y,y’ € Ms. Define

T:=F/Q, 71:M xM—T, (2,y)— (z,y).

Then by the construction of @, 7 is bilinear. Let now be M a further R-module and ® : M; x
My — M a bilinear map. Define

¢:F— M, (z,y)— ®(x,y).

Clearly QNS is linear. Moreover we have ) < ker(¢), since ® is bilinear. By the isomorphism
theorem, ¢ factors to a linear map ¢ : T —> M satisfying ¢ ((m, y)) = ®(x,y). The uniqueness
of ¢ follows by the fact that T is generated by the (x,y) for x € M,y € Mo. O

Example 11.10 We want to find out what is
L /27, ®7 L /3L
Let ® : Z /27, x Z /37, —> A bilinear for some Z-module A. Then we see
(1,1)=23B,1)=2(3-(1,1)) =3-0(1,1) = &(1,3) = ¢(1,0) = 0- ®(1,1) =0

Hence ® = 0, since (1,1) generates Z /27, x Z /37,. Thus Z /27, ®z Z /37, = 0.

Proposition 11.11 For R-modules M, My, Ma, M3 we have the following properties.
(i) M®r R= M.
(i) My ®r My =~ My ®p M.
(iii) (M1 ®p Ma) ®r Mz = My @p (M2 ®r Mb).

proof. (i) Let 7: M xR — M, (z,a) — a-z. Then 7 is bilinear. We now can verify the univer-
sal property of the tensor product. Let N be an arbitrary R-module and ® : M x R — N

be bilinear a bilinear map. Define

¢: M — N, zx— &(z,1)
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Then ¢ is R-linear: For x,y € M,a € R we have
bla-o) = Bla-2,1) = a- Bz, 1) = a- b(a)
Pr+y) =2z +y 1) =2(x1)+2(y,1) = ¢(x) + ¢(y)

and thus
o (t(z,a)) =¢(a-z) =a- - P(z,1) = ®(z,a)

(ii) The isomorphism
My x My —=> My x My, (x,y) — (y,2)

induces an isomorphism M| ®g Mo =~ M> ®r M.
(iii) For fixed z € M3 define

$, 1 My x My —> My ®r (M2®r M3), (2,y) > 2@ (y®z) = T1(23) (T23(2,9)) -
Then &, is bilinear and induces a linear map
¢»: My ®p Mz — My ®r (M2 ®r Ms3) .
Define
U (My ®r M) x M3 — My Qg (M2 ®r M3), (2®vy,2) — ¢(x®y).
V¥ is bilinear and induces a linear map
Y1 (M1 ®r M) ®r M3 —> My ®p (M2 ®r M3)
Doing this again the other way round we find a linear map
b My @ (Ma ®r Ms) — (M1 @ M) ®r Ms

By the uniqueness we obtain as in Remark 11.6 that 1 o 1/; = 1[; o1 = id, hence the claim
follows. ]

Definition 4+ remark 11.12 Let M, M, ... M, be R-modules.
(i) A map

n
@:Mlx...anzl_[Mi—>M
=1

is called multilinear, if for any 1 < ¢ < n and all choices of x; € M; for j # i the map

(I)i:Mi—>M, :z:»—><I>(x1,...,:ci_l,x,a:iﬂ,...,xn)
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is linear.

(ii) The map

n n
TMl,---Mn:HMi—)@)Mi? (ml,...,xn)Hxl@)...@xn
i=1 i=1

is multilinear.

(iii) For every multilinear map

@:ﬁMi—>M
i=1

there exists a unique linear map
n
¢: XM, — M
=1

such that ® = ¢ o T, ., -

Definition 11.13 Let M, N be R-modules, ® : M" = [[;_; M — N a multilinear map.

(i)

(i)

® is called symmetric, if for any o € S,, we have
D(z1,...70) = P(To1)s - To(n))-
® is called alternating, if
x; = x; for some i # j — ®(x1,...2,) = 0.
If char(R) # 2, this is equivalent to

Oz, Tiy ooy Ty, ) = =Pz, Ty Ty, X)),

Proposition 11.14 Let M be an R-module, n = 1.

(i) There exists an R-module S™(M), called the n-th symmetric power of M and a symmetric

(i)

multilinear map

oy M" — S"(M)

such that for all symmetric, multilinear maps ® : M™ — N for any R-module N there
ezists a unique linear map ¢ : S"(M) — N satisfying ® = ¢ o of;.

There exists an R-module A" (M), called the n-th exterior power of M and an alternating
multilinear map

A s M™ — A™(M)

such that for all alternating, multilinear maps ® : A"(M) — N for any R-module N there
ezists a unique linear map ¢ : A"(M) — N satisfying ® = ¢ o X'},
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proof.

(i) Let T*(M) = M ®p ... ®nr M.
Let now J, (M) be the submodule of 7" (M) generated by all elements

(21 ®...Qxzy,) — (:Cg(l)®...®x(,(n)), rieM,oc€ S,

Define
Sn(M) = Tn(M) /Jn(M)v 0-17\1/1 = prOj O TM,..M

Then o7, is multilinear and symmetric by construction. Given a multilinear and symmetric
map ® : M™ — N, define ¢ as follows: Let ¢ : T"(M) — N be the linear map induced
by ® and observe that .J, (M) < ker(¢). Hence ¢ factors to a linear map

¢: 8" (M) =5"(M) /J,(M) — N

satisfying ¢ o o, = ®.
Similarily let I,,(M) be the submodule of 7" (M) generated by all the elements

11 Q... x,, x; € M with z; = x; for some i # j
Analogously we define
A (M) :=T"(M) /1,,(M), A7 1= PrOj O T\, M

and obtain the required properties. O

Proposition 11.15 Let M be a free R-module of rank v and {ei,...,e,} a basis of M. Then
A™(M) is a free R-module with basis

proj(e; ®...®ei,) =1 €, A ... A€, I1<ip<...<ip<r

In particular, A"(M) =0 for n > r and rank (A"(M)) = 1.

proof. By definition we have e;, A...Ae;, = 0if i, = 7; for some k # j, hence we have A" (M) =0

for n > r, as at least on of the e; must appear twice.

generating: Clearly the e;; A ... A€, ik € {1,...,r} generate A”(M). We have to show that we

can leave out some of them. Obviously Cipay N A iy is a multiple by £1 of e;, A... A€,

Thus the e;, A ... Ae;, with 1 <i; <iga <... <1y, <r generate A"(M).

linear independence: Assume

Z @iy ,in€iy A oo A€, =0, (%)

1<ig<...<in<r

For fixed j := (j1,...jn),1 < j1 < ... < jn < r choose o; € S, such that o;(k) = jj for
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1 < k < n. Then we obtain

terAn...ne if i =g forall k
61'1/\.../\€in/\€gj(n+1)/\.../\€

0 otherwise

By () we get

0 = < Z Aiy,in€ip N oo A ein) AN eaj(n+1) VANEEIVAN eaj(r) = ajejl VANEIIVAN €jr
1<ii<...ip<r

and thus a; = 0. O

Example 11.16 Let M = R". Then A¥(M) is the free R-module with basis
ey Ao ANEy, 1I<ii<...<iy<n

and we have e; A ez = —ea A e1. What is A"(R") = A"(M)? And what is A\}1? First we obtain
A" (R") = (e1 A ... A ep)R = R. Then

ai;

M" = (Rn)n = Rnxn’ (al, .. .an) =Ae€ Rnxn7 a; = = Z aj;i€j € R" = M.

Jj=1
Qnj

)\7{\04 = )\ETL = )\n(A) = )\n <Z ajlej, ey 2 ajnej>
j=1 j=1
aj
=1

n
= Zajlej/\.../\z: in€;j
j=1 j

J

For AM we get

n n
aj1 | €1 N Z @j2€5 N ... A Z Ajn€j
7=1

j=1

ip-g= 1hs

n
ajl---Zajn(el /\.../\en)
j=1
= 2 aa(l)l ce ag(n)n Tl N LN Ep sgn(a)
= det(A)-e1 A...Aep,
which is well-known tu us.
Definition 11.17 Let M be a R-module. Then we define

T(M) := éc) ™(M), T%M):=R, T(M):=M
n=0
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S(M) := é S*(M).  S°(M):=R, S(M):=M
n=0

A(M) := é.OBA"(M), A (M);=R, A(M) := M
n=0

On T (M) define a multiplication

T (M) x T™M(M)  — T (M),
1®..Qx,) (N®...QUn) — 210...0T, Y Q...0UYm

Similarly do it for S(M) and A(M). Then we have R-algebra-structures and feel free to define
(i) the tensor algebra T'(M),
(ii) the symmetric algebra S(M)

(iii) the exterior algebra A(M).

Definition 11.18 Let R be an arbitrary ring.
(i) An R-algebra is a ring R’ together with a ring homomorphism « : R — R’. In particular
R’ is an R-module. If « is injective, R'/R is called a ring extension.
(ii) A homomorphism of R-algebras R’, R” is an R-linear map ¢ : R' — R”, which is a ring

homomorphism.

Example 11.19 (i) R[X1,...Xn] is an R-algebra for every n € N.
(ii) If R is an R-algebra and I < R’ an ideal, then R’/ is an R-algebra.

Remark 11.20 Let R’ be an R-algebra, F a free R-module. Then F' := F Qr R is a free R'-

module.

proof. Let {e;}icr be basis of F. Let us show, that {e; ® 1};er is basis of F’ as an R-module,
where F’ is an R’ module by

b-(r®a):=2®b-a, a,beR, zeF

Check the universal property of the free R'-module with basis {e; ® 1};c; for F®r R’. Let M’ be
an R-module and f : {e; ® 1},c; —> M’ be a map. We have to show: There exists an R'-linear
map ¢ : F/ — M’ with ¢(e;®1) = f(e;®1). Note that the {e;®1} generate F’ as an R'-module,
since ¢; ®a = a- (e; ®a) for a € R'. Let c;; : F — M’ be the unique R-linear map satisfying

o(e;) = f(e; ®1). Then define

¢:FRr R — M, x®a'—>a-<£(x).
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Then ¢ is R'-linear an we have

$ei®1) =1-(e;) = dlei) = fei ®1),

which gives us the desired structure of an R’-module. [l

Proposition 11.21 Let R be a ring, R', R" two R-algebras.
(i) R ®r R" is an R-algebra with multiplication

(a1 ®b1) - (a2 ®b2) := (a1a2) ® (b1b2)
(ii) There are R-algebra homomorphisms

o R — R®rR", a—a®1

o":R"— R"®r R, b—1®b

(111) For any R-algebra A and R-algebra homomorphisms ¢' : R\ —> A, ¢" : R — A, there is

a unique R-algebra homomorphism
¢:R@p R — A

satisfying ¢’ = ¢po o’ and ¢" = ¢pod”, i.e. making the following diagram commutative

R/ ®R R//
o’ :
0_// ‘
R R I ¢

¢l/ ‘

|

oy Y

A

proof. Defining
¢:R xR — A (2,y)~ ¢(x) - ¢"(y)

gives us ¢, which satisfies the required properties. O

§ 12 Hilbert’s basis theorem

Definition 12.1 Let R be a ring, M and R-module.
(i) M is called noetherian, if any ascending chain of submodules My < M; < ... becomes

stationary.
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(ii) R is called noetherian, if R is noetherian as an R-module, i.e. if every ascending chain of

ideals becomes stationary.

Example 12.2 (i) Let k be a field. A k-vector space is noetherian if and only if dim(V') < oo.
(ii) Z is noetherian.

(iii) Principle ideal domains are noetherian.

Proposition 12.3 Let

«

0— M -5 M5 M —0

be a short exact sequence. Then M is noetherian if and only if M’ and M" are noetherian.

proof. ’=’" Let M be noetherian. Let first Mj < M < ... be an ascending chain of submodules
in M'. Then a(M|) € a(M]) < ... is an ascending chain in M. Since M is noetherian,
there exists some n € N, such that a(M]) = a(M)) for all i > n. Since « is injective,
we have M = M), for i > n, hence M’ is noetherian. Let now M{ < M{ < ... be an
ascending chain of submodules in M”. Then 371 (My)" < B~1(M]) < ... is an ascending
chain in M, hence becomes stationary. Since 3 is surjective, 8 (87(M]")) = M/ and thus

M} < M{ < ... becomes stationary.
‘<" Let My « M; < ... be an ascending chain in M. Let M := a~}(M;) =~ M; n M’ and
M/ := B(M;). By assumption, there exists n € N, such that M/ = M) and M = M, for

all ¢ > n. Then for 7 > n we have

0 M), M, M) 0 exact
)
0 M = M; 5 M 0 exact

Where 7 is injective as an embedding. It remains to show that v is surjective. Let z € M;.
Since f is surjective, there exists x € M, such that 8(z) = 5(2). Then 5 (y(z) —2) =0 =
v(z) — z = a(y) for some y € M/ = M/ . Let Z := z — a(y). Then

hence ~ is surjective, thus bijective and we have M; = M, for i = n. O

Corollary 12.4 Let R be a noetherian ring.
(i) Any free R-module F' of finite rank n is noetherian.
(i) Any finitely generated R-module M is noetherian.

proof. (i) Prove this by induction on n.
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n =1 Clear.
n > 1 Let e,...e, be a basis of F' and le F’ be the submodule generated by eq,...e,_1.
Then F’ is free of rank n — 1, thus noetherian by induction hypothesis. Moreover

F/F" is free with generator e,. Thus we have a short exact sequence
O—)F/—>F—>F/F/—>O

with F’, F' /F’ noetherian, hence by 12.2, F' is noetherian.

(ii) If M is generated by z1, ...z, there is a surjective, R-linear map ¢ : F' — M, sending the

e; to x;, where F' is the free R-module with basis eq,...e,. Again by 12.2, M is noetherian

which finishes the proof. O

Proposition 12.5 For an R-module M the following statements are equivalent:

(i) M is noetherian.

(i) Any nonempty family of submodules of M has a mazimal element with respect to '=’.

(11i) Every submodule of M 1is finitely generated.

proof. '(i)=>(ii)’ Let M # & be a set of submodules of M. Let My € M. If My is not maximal,

there is My € M with My < M. If M; is not maximal, there is My € M with M7 < M>.

Since M is noetherian, we come to a maximal submodule M,, after finitely many step.

'(ii)=(iii)” Let N < M be a submodule. Let M be the set of finitely generated submodules of

‘(ili)=(i)" Let My < M; < ... be an ascending chain of submodules in M. Let N :=

N. Since (0) € M, we have M # (& and thus there exists a maximal element Ny € M.
If Ng # N, let z € N\Ny and N’ := Ny + (z) be the submodule generated by Ny and z.
Then clearly N’ € M, which is a contradiction to the maximality of Ny. Hence Ny = N
and N is finitely generated.

M,.

By assumption, N is finiteley generated, say by z1,...x,. Then there exists ig € N, such

nENO

that xj € M;, for all 1 < k < n. Thus we have M; = M;, for ¢ > ip, i.e. th chain becomes

stationary and M is noetherian. O

Corollary 12.6 R is noetherian if and only if every ideal I I R can be generated by finitely

many elements. In particular, every principle ideal domain is noetherian.

proof. Follows from Proposition 12.4. O

Theorem 12.7 (Hilbert’s basis theorem) If R is noetherian, R[X] is also noetherian.

proof. Let J < R[X] be an ideal. Assume that J is not finitely generated. Let fi be an element
of J\{0} of minimal degree. Then (f1) # J. Inductively let J; := (f1,... f;) and pick fir1 € J\J;

of minimal degree. Let a; be the leading coefficient of f;, i.e. we have

deg(fi)—1 _
fi= aiXdeg(fi) + Z ijJ
j=1
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The ideal I < R generated by the a; for ¢ € N, is finitely generated by assumption.

Then we find n € N such that a,4+1 € (a1,...,a,), i.e. we have

n
ant1 = Z i
i=1
for suitable \; € R. Let d; := deg(f;). Note, that d;+1 > d; for all 1 <i < n. Let now

n
p = Z )\ifl'Xd"+1_di.
i=1

Then the leading coefficient of p is

n
Qi = ) Nia
i=1

Hence deg(p— frn+1) < dp+1, p— fn+1 & Jn, since p € Jy, so fr4+1 would be in J,,. This contradicts
the choice of f,, 1. Hence our assumption was false and .J is finitely generated and by Corollary

12.5 R[X] is noetherian.

Corollary 12.8 Let R be noetherian. Then
(i) R[X1,...Xy] is noetherian for any n € N.
(ii) Any finitely generated R-algebra is noetherian.

§ 13 Integral ring extensions

Definition 13.1 Let R be ring, S an R-algebra.
(i) f R< S, S/R is called a ring extension.
(ii) If R< S, be S is called integral over S, if there exists a monic polynomial f e R[X]\{0}
such that f(b) = 0.

(iii) S/R is called an integral ring extension, if every b € S is integral over R.

Example 13.2 (i) If R = k is a field, then integral is equivalent to algebraic.
(i) +/2 is integral over Z, since f = X2 — 2 is monic with f(1/2) = 0.

(ili) § is not integral over Z.

Assume 1 is integral over Z. Then there exists some monic f € R[X], such that f (1) =0,

() s(3) e

for some g € Z[X].Then 2" ! . ¢ (%) € Z. Multiplying (%) by 2”1 gives us

(1))

i.e. we have
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1 1
) N e
()

Thus % is not integral over Z. More generally, we easily see that any g € Q\Z is not integral

and hence

over Z.

Lemma 13.3 Let S/R be a ring extension, b € S. If R[b] is contained in a subring S" < S which

1s finitely generated as an R-module, then b is integral over R.

proof. Let s1,..., s, be generators of S’. Since b-s; € S (we have b € R[b] < S), we find a;; € R,
such that

b-s; = Z a;psy = 0= Z(aik‘ — i) Sk (%)
k=1 k=1

Claim (a) Let A be the coefficient matrix of (). Then det(A) =0
Since the determinant is a monic polynomial in b of degree n with coefficients in R, b is integral
over R. It remains to show the claim.

(a) Let A% be the adjoint matrix
Aﬁ = det(AZ-j . (—1)i+j
where A;; is obtained from A by deleting the i-the row and j-th column. Recall
AT A = det(A) - E,.

By () we have

S1
A- =0,
Sn
hence we have
S1
A A | 1 [=0 = det(A) - s; =0 foralll<i<n.
Sn
Since S’ is a subring of S, we have 1 € S/, hence there exist A\1,..., )\, € R with

n
1= Z )\iSi-
i=1

Finally
det(A) = det(A) - 1 = det(A) - Y Ajs; = > det(A) - \; -5, =0
i=1 i=1
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Proposition 13.4 Let S/R be a ring extension. Define
R:={be S |b is integral over R} 2 R

Then R is a subring of S, called the integral closure of R in S.

proof. Let by, bs € R. We have to show, that by + by € R, b1bs € R. Let R[b1] be the smallest sub-
ring of S containing R and b;. Then R is finitely generated as an R-module by 1, by, b%, cee b’f_l,
where n denotes the degree of the 'minimal polynomial’ of f. Thus R[b1, b2] = (R[b1]) [b2] is also
finitely generated as an R[b;]-module. This implies, that R[b1, ba] is also finitely generated as an
R-module and by Lemma 13.2, R[b1,bs]/R is an integral ring extension. In particular, by + by

and b1by are integral over R. O

Definition 13.5 Let S/R be a ring extension, R the integral closure of R in S.
(i) R is called integrally closed in S, if R = R.
(ii) Let R be an integral domain. The integral closure of R in Quot(R) is called the normali-

zation of R. R is called normal, if it agrees with its normalization.

Proposition 13.6 Any factorial domain is normal.

proof. Let R be a domain and z = § € Quot(R),a,b € R,b # 0 relatively prime. Suppose, = is

integral over R, i.e. there exist ag,...,a,—1 € R, such that

1+...+a1x—|—a0=0

"+ ap_1x"”

Multiplying by b" gives us

A"+ ap_1a” b+ .+ agab™ T+ b =0

and hence
a"=b- (—an,la”_l — . —arab™ % — agb”_l) > bla"
eR
Since a and b are coprime, we have be R*. Thus x = § = ab~! € R and R is normal. O

Definition 13.7 Let R be a ring.
(i) For a prime ideal p < R we define

ht(p) := sup{n € Ny ’ there exist prime ideals po, p1,...,pn, With p, =p and po S ... S pn}

to be the height of p.
(ii) The Krull-dimension of R is

dim(R) := dimgya(R) = sup{ht(p) | p < R prime }



80 IIT RINGS AND MODULES

Example 13.8 (i) Since (0) < (X1) < (X1, X2) & ... & (X1,...,X,), we have dim (k[ X71,..., X,]) =

n.

(ii) dim(k) = 0 for any field k, since (0) is the only prime ideal.

(iii) dim(Z) = 1, since (0) < (p) is a maximal chain of prime ideals for p € PP.

(iv) dim(R) = 1 for any principle ideal domain which is not a field:
Assume p, ¢ are prime element with (p) € (¢). Then p = ¢ - a for some a € R. Since p is
irreducible, we have a € R* and hence (p) = (q).

(v) dim(k[X]) =1 for any field k:

Theorem 13.9 (Going up theorem) Let S/R be an integral ring extension and

a chain of prime ideals in R. Then there exists a chain of prime ideals

PoEPr1&... <Py

i S, such that p; = P; N R.

proof. Do this by induction on n.
n=0 Let p< R be a prime ideal. We have to find a prime ideal P < .S with T n R = p. Let

P:={I<Sideal |I n R =p}

Claim (a) pS e P.

Then P is nonempty. Zorn’s lemma provides us then a maximal element m € P.

Claim (b) m< S is a prime ideal.

This proves the claim. It remains to show the Claims.

(b) Suppose by,be € S with bjby € m. Assume by, by € S\m.
Then m + (b;) ¢ P, hence (m+ (b;)) 2 p for ¢ € {1,2}. = Thus there exists p; €
m, s; € S such that r; := p; + b;s; € R\p. Then we have

r1ry = (p1 + b151)(p2 + b2s2) = pip2 + p1basa + bisipa +  biby  sisp € m
~ v

em em by ass.

Clearly 172 € R, hence 119 € m N R = p, which is a contradiction, since p is prime.
(a) We have to show pS n R = p. We prove both inclusions.
D’ This is clear by definition.

'C’ Let now

n
b= sztu Deb, tz es
=0

Since the t; are integral over R, R[t1,...t,] =: S’ is finitely generated. Let
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S1,...,8m be generators of S’ as an R-module. Since b € pS’, we have

m
bSZ' = 2 Qi Sk
k=0

for suitable a;; € p. Then as in lemma 13.3 we have det(a;; — d;xb) = 0 and thus

b is a zero of monic polynomial with coefficients in p, i.e. b satisfies an equation
b + an_lbn_l +...+ab+ay=0 with a; € p,
Write
n—1 '
== b ey,
=0

since b’ € p. Since p is prime, we must have b € p and hence the required inclusion.

n>1 By induction hypothesis we have a chain

PocPr < ... < Pra

satisfying B; N R = p;. Moreover we find *,, < S such that B,, n R = p,,. [t remains to show
PBr_1 SV ForxeP,,_1 wehavex e Rnp,_1,i.e. x € pp_1 < pp. Thusz € p,n R =P,

Assume now B, _1 = P,. Let x € p,,. Then
zeppeEPp " R=L, =Pr1=pp-1" R, = zep,1

and thus p, S pn—1, hence p, = p,—1, a contradiction. O

Theorem 13.10 Let S/R be an integral ring extension. Then dim(R) = dim(S5).

proof. ’<’ Follows from Proposition 13.7
2" Let Po < P1 < ... < Py be chain of prime ideals in S and define p; :=P; N R.
Then p; is prime and we have p; S p;41. It remains to show, that p; # p;41.
Define S" := S /9p; and R' := R /p;. Then S’/R’ is integral (!).
We have to show that B, N R = p,,; := image of p;41 in S’ is not (0).
Let b € PB;+1\{0}. Since b is integral over R’, there exist ay,...,a,—1 € R, such that

"+ ap_ 10"+ +ab+ag=0
Let further n be minimal with this property. Write

agz—b(aq—l—agb-i-+an_1bn_2+bn_1)€$Z+10R:ﬁz+1

_

~~
=C
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But ¢ # 0 by the choice of n and b # 0. Since R' = R /p is an integral domain, we have
0 # agp € p;1 and thus p;; # (0), which proves the claim. O

Theorem 13.11 (Noether normalization) Let k be a field. Then every finitely generated k-

algebra is an integral extension of a polynomial ring over k[X].

proof. Let ay,...a, be generators of A as a k-algebra. Prove the theorem by induction.

n=1 If a; is transcendental over k, then A =~ k[X]. Otherwise A =~ k[X] /(f), where f denotes
the minimal polynomial of a; over k. Thus A is integral over k.

n>1 If ay,...a, are algebraically independent, A =~ k[X7,...X,]. Otherwise there exists some
polynomial
F e k[Xy,... X,]\{0} such that F(ay,...ay) = 0.

case 1 Assume we have

with ¢g; € k[X1,...X,]. Then F(ai,...a,) = 0, hence a, is integral over A’ :=

klai,...,an—1]. By induction hypothesis, A’ is integral over some polynomial ring,
so is A.
case 2 For the general case write .
F=)F,
i=0

where F; is homogenous of degree 7, i.e. the sum of the exponents of any monomial in

fiis equal to i. Then replace a; by b; := a; —Aa, (*) with suitable \; € k, 1 <i < n—1.

Then A = k[b1,...,bn—1,ay]. For any monomial a‘lil -+ al we find

n—1
alt--a® = (by + Aan)™ - (b1 + Ap_1an) " adn = <H )\?l) qzim ey O(ay)
i=1

where O(a,) denotes terms of lower degree in a,. Then for d := > | d; we obtain
Fd(al, - an) = ag . Fd(/\l, c A1, 1) + O(an)

and thus
F(ai,...,an) =alFn(A, ..., n—1,1) + O(ay)

Choose now Ay,...,Ap—1 € k, such that Fp,(A1,..., \p—1,1) # 0. If k is infinite, this
is always possible. In the finite case, go back to () and use b; := a; + al’ instead
and repeat the procedure. Then by the first case and induction hypothesis the claim

follows. ]
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§ 14 Dedekind domains

Definition 14.1 A noetherian integral domain R of dimension 1 is called a Dedekind domain,

if every nonzero ideal I < R has a unique representation as a product of prime ideals

I = pr---pr

Definition 4 remark 14.2 Let R be a noetherian integral domain, k := Quot(R) and (0) #
I € k an R-module.
(i) I is called a fractional ideal, if there exists a € R\{0}, such that a - I < R.
(ii) I is a fractional ideal if and only if I is finitely generated as an R-module.
(iii) For a fractional ideal I let
IV :={zeklz- IR}

Then 1! is a fractional ideal.
(iv) I is called invertible, if I - =1 = R, where I - I denotes the R-module generated by all
products z -y with x € I,y e 1.

proof. (ii) '=’ If a-I < R, then a - [ is an ideal in R. since R is noetherian, a - I is finitely

Tn
' g

generated, say by x1,...,2,. Then I is generated by 71, ...

‘<’ Let y1,...,ym be generators of I. Write y; = 2—’: with r;, a; € R\0. Define

n
a:= Hai
i=1
Then for any generator we have a -y; = r-a1-...a;_1 - Qjy1 ... am € R, hence
a-I< R.

Example 14.3 Every principle ideal I # (0) is invertible:
Let I = (a) < R. Then I™! = LR, since we have

I'I’lz(a)-leaR-leR
a a

Proposition 14.4 Let R be a Dedekind domain. Then every nonzero ideal I < R is invertible.

proof. Let (0) # I < R be a proper ideal. Then by assumption we can write

I'=p1 - pr

with prime ideal p; < R.

If each p; is invertible, then we have

Lpt-py! =R,
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hence I is invertible. Thus we may assume that I = p is prime. Let a € p\{0} and write

(@) =p1 - Pm

with prime ideals p; < R. Then (a) € p, i.e. p; € p for some 1 < ¢ < m, say i = 1. Since
the ideals were proper and dim(R) = 1, we have p; = p and p~! = pl_l = é -P2 - - - Pm, since

pipyt = G(0) = (1) =R O
Corollary 14.5 The fractional ideals in a Dedekind domain R form a group.

proof. Let (0) # I < k = Quot(R) ba a fractional ideal. Choose a € R such that a-I < R.

By Proposition 14.3, a - I is invertible, i.e. there exists a fractional ideal I’, such that
(a- 1) I'=R = I-(a-I')=R
where R is neutral element of the group. O]

Proposition 14.6 FEvery Dedekind domain R is normal.

proof. Let x € k := Quot(R) be integral over R, i.e. we can write
"+ a1 X"+ a1z +ag =0, a; € R

By the proof of Proposition 13.3, R[z] is a finitely generated R-module, hence R[] is a fractional
ideal by Remark 14.2. Further by Corollary 14.4 R[z] is invertible, i.e. we can find I < k, such
that I - R[z] = R.

On the other hand R[x] is a ring, i.e. R[z]- R[z] = R[z]. Multiplying the equation by I gives us

x € R. In particular we have
R=1-R[z] =1I-(R[z] R[z]) = (I - R[z])- R[z] = R- R[z] = R[z],
which implies the claim. O

Proposition 14.7 Let R be noetherian integral domain of dimension 1. Then R is a Dedekind

domain if and only if R is normal.

proof. ’=" This is Proposition 14.5
"<’ We claim
claim (a) For every prime ideal (0) # p < R the localization R, is a discrete valuation
ring.
claim (b) Every nonzero ideal in R is invertible.
Then let (0) # I # R be an ideal in R. Then I < mg for a maximal ideal my< R. By claim

(b), mg is invertble. Define I; := mo_l -I. Then I < mal ‘mg = Risanideal. If I; = R, then
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I = my. Otherwise let m; be a maximal ideal containing I; and define I, := ml_1 -I1 < R.
If I; = I, then mgl =R mgl = R, which is a contradiciton.

By this way we obtain a chain of ideals
Ichchs...oI,

Since R is noetherian, there exists n € N; such that I,, = R. Then

-1

R=1I,=m! nil...mal.[

-1 -1
n—1" In1 = My My In—2=m

Thus

I'=mp-my---my_o-my 1

with maximal, thus prime ideals m;. Hence R is a Dedekind domain.
It remains to show the claims.
(b) Let (0) # I < R be an ideal. We have to show [ -I~! = Rfor "' = {zxek|xz-I < R}.

'c’ Clear.

D’ Assume I - I~! # R. Then there exists a maximal ideal m < R such that [ -1~ < m.
By claim (a), Ry is a principal ideal domain, thus I - Ry, is generated by one element,
say ¢ for some a € I, s € R\m. Let now by,...,b, be generators of I as an ideal in R.
Then

blizz-gi, ri€ R,sie Rm, for1<i<n

Define ¢ := s+ $1 -+ s, € R\m.

We have é e I~!, since

Ty

[
&
I
SHES
w | e

8‘:Tz"sl"'Si—1'3i+1"'3n€R
7

for 1 <7 < n. But then

t
t=--ael ' - Tcm }
a

(a) We will only give a proof sketch. The strategy is as follows:
(i) Ot suffices to show, that m := pR,, is a principal ideal.
(ii) Show that m" # m.
(iii) Show that m is invertible.
Then pick ¢ € m*\m and obtain ¢-m~! = R,,. This is true, since otherwise, as m is the only
maximal ideal in Ry, we would have ¢ - m~! < m and thus t € m?, which implies m = m?.
Then we have

(t)=t-R=t-(m-m')=R, - m=m,

which will gives us the claim. ]



86 IIT RINGS AND MODULES

Theorem 14.8 Let R be a Dedekind domain, L/k a finite separable field extension of k :=
Quot(R) and S the integral closure of R in L. Then S is a Dedekind domain.

proof. We will show all the required properties of a Dedekind domain.

integral domain. This is clear.

dimension 1. We know that S/R is integral and Proposition 13.7 gives us dim(S) = 1.

normal. If x € L is integral over S, x is integral over R, thus z € S.

noetherian. This is the only hard work in the proof. Let N := [L : k]. Since L/k is separable,
there exists a € L such that L = k(a). Moreover we have [Homy (L, k)| = n, say Homy(L, k) =

{id =o01,...0n}.
claim (a) « can be chosen in S.
Then let
1 o =t
1 02(a) R ag(a"_l)
D= . : . = (Ui(a]))(i,j)e{l,...,n}x{07...,n—1}
1 op(a) ... op(a™h)

and d := (det(D))% d := dr k() is called the discriminant of L/k with respect to c.
claim (b) We have
(i) d#0
(ii) S is contained in the R-module generated by é, s %71
Then S is submodule of a finitely generated R-module, and since R is noetherian, S is noetherian
as an R-module, thus also as an S-module. This proves noetherian. Now prove the claims.

(a) Let & € L ba a primitive element, i.e. L = k(&). Let
n—1 4
f:X”—EqXZ
i=0

be the minimal polynomial of & over k. Writr ¢; = % for suitable a;,b; € R,b; # 0. Now

define
n—1
b:=[[bii a=b-a
=0
Since we have
n—1 n—1 i
- - o
o =b"a" =b" Zcio/— ch'ﬁbn
=0 =0
we obtain
n—1
a"=0b"-a" = Z ci?a’y, ci=c¢; """ eR.
=0

Thus « is integral over R, i.e. « € S. We easily see k(a) = k(&), hence the claim is proved.
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(b) (i) We have
d=(det(D))> = ] (osa) = (a))* #0,

1<i<j<n

since otherwise we would have o;(a) = 0j(), i.e.e 0; = 0;, which is not possible.

(ii) Let g e S. Write

n—1
B = 2 ciy1a', ¢ €ek.
i=0

We have to show: ¢; € %R for all 1 < ¢ < n. Therefore we need

claim (c) There is a matrix A € R"*" and b e R", such that

c1
Al 1 |=0b and det(A4) =d.

Cn

Then by Cramer’s rule and Claim (c) we have

B det(Ai) _ det(Ai)
~det(4)  d

1

Ci eE—-€R

87

where A; is obtained by replacing the i-th column of A by b. This proves claim (b).

(c) Recall that

trL/k L — k, 5 —> Z Uz(ﬁ)
i=1

is a k-linear map.For 8 as above we find for 1 <7< n

(%) trL/k(ai_lﬁ) = Z trL/k(ai_laj_lcj) = Z trL/k(ai_laj_l)cj e knS=R
t’s‘/ j=1 j=1

where the last equality holds since R is normal and by Proposition 14.5. Let now

A= (aij)(i,i)e{l ..... nyx{l,.n}> Hj = tTL/k;(ai_l,Oéj_l)

and

Then by () we have

C1
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i.e. the first part of the claim. Moreover we have DT D = (a;;), where

ajj = Z O'k(Oéii Yok ( aj 1 = Z o tad— 1 trL/k(aifl,ozjfl) = a;j.
k= k=1
Hence DD = A and by det(D) = det(D?) we have
det(D)? = det(D - D) = det(D - DT) = det(A) = d.

We have now shown that S is an integral domain, of dimension 1, noetherian and normal. By

Proposition 14.6 the theorem is proved. O
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