Algebra

lectured by Prof. Dr. Frank Herrlich during fall 2014/2015 at the KIT

Inhaltsverzeichnis

I Galois theory 5
§ 1 Algebraic field extensions 5
§ 2 Simple field extensions 11
§ 3 Galois extensions 18
§4 Solvability of equations by radicals 23
§ 5 Norm and trace 31
§ 6 Normal series of groups 36
II Valuation theory 41
§ 7 Discrete valuations 41
§ 8 The Gauß Lemma 45
§ 9 Absolute values 49
$\S 10$ Completions, p-adic numbers and Hensel's Lemma. 55
III Rings and modules 63
§ 11 Multilinear Algebra 63
§ 12 Hilbert's basis theorem 74
§ 13 Integral ring extensions 77
§ 14 Dedekind domains 83

Kapitel I

Galois theory

§ 1 Algebraic field extensions

Notations 1.1 If k, L are fields and $K \subseteq L, L / k$ is called a field extension. The dimension $[L: k]:=\operatorname{dim}_{k} L$ of L considered as a k-vector space, is called the degree of the field extension of L over k. A field extension L / k is called finite, if $[L: k]<\infty$. The polynomial ring over k is defined as

$$
k[X]:=\left\{f=\sum_{i=0}^{n} a_{i} X^{i} \mid n \geqslant 0, a_{i} \in k \forall i \in\{0, \ldots, n\}, a_{n} \neq 0\right\} \cup\{0\}
$$

Reminder 1.2 Let L / k a field extension, $\alpha \in L, f \in k[X]$.
(i) $f(\alpha)$ is well defined.
(ii) $\phi_{\alpha}: k[X] \rightarrow L, f \mapsto f(\alpha)$ is a homomorphism.
(iii) $\operatorname{im}\left(\phi_{\alpha}\right):=k[\alpha]$ is the smallest subring of L containing k and α.
(iv) $\operatorname{ker}\left(\phi_{\alpha}\right)=\{f \in k[\alpha] \mid f(\alpha)=0\} \triangleleft k[X]$ is a prime ideal.
(v) $\operatorname{ker}\left(\phi_{\alpha}\right)$ is a principle ideal.
(vi) If $f_{\alpha} \neq 0$ and the leading coefficient of f_{α} is $1, f_{\alpha}$ is called the minimal polynomial of α, i.e. $f_{\alpha}(\alpha)=0$ and f_{α} is the polynomial of smallest degree with this property. In this case, f_{α} is irreducible and $\operatorname{ker}\left(\phi_{\alpha}\right)=\left(f_{\alpha}\right)$ is a maximal ideal.
(vii) Then $L_{\alpha}:=k[X] / \operatorname{ker}\left(\phi_{\alpha}\right)=k[X] /\left(f_{\alpha}\right)$ is a field.
(viii) We have $k[\alpha]=\operatorname{im}\left(\phi_{\alpha}\right) \cong k[X] / \operatorname{ker}\left(\phi_{\alpha}\right)=L_{\alpha}$, if $f_{\alpha} \neq 0$. Moreover $k[\alpha]=k(\alpha)$, where $k(\alpha)$ is the smallest field containing k and α. In particular, $\frac{1}{\alpha} \in k[\alpha]$.
(ix) The degree of the field extension $k[\alpha] / k$ is $[k[\alpha]: k]=\operatorname{deg}\left(f_{\alpha}\right)$.
proof. (ii) For $f, f_{1}, f_{2} \in k[X], \lambda \in k$ we have

$$
\left(f_{1}+f_{2}\right)(\alpha)=f_{1}(\alpha)+f_{2}(\alpha) \operatorname{and}(\lambda f)(\alpha)=\lambda \mathrm{f}(\alpha)
$$

(iii) Clear.
(iv) Let $f, g \in k[X]$ such that $f \cdot g, \in \operatorname{ker}\left(\phi_{\alpha}\right)$: Then

$$
0=(f \cdot g)(\alpha)=f(\alpha) \cdot g(\alpha)
$$

and since L has no zero divisors, $f(\alpha)=0$ or $g(\alpha)=0$ and hence $f \in \operatorname{ker}\left(\phi_{\alpha}\right)$ or $g \in \operatorname{ker}\left(\phi_{\alpha}\right)$
(v) Remember that the polynomial ring is euclidean. Take $f_{\alpha} \in \operatorname{ker}\left(\phi_{\alpha}\right)$ of minimal degree. We will show, that $\operatorname{ker}\left(\phi_{\alpha}\right)$ is generated by f_{α}. Let $g \in \operatorname{ker}\left(\phi_{\alpha}\right)$ arbitrary and write

$$
g=q \cdot f_{\alpha}+r \text { with } q, r \in k[X], \quad \operatorname{deg}(r)<\operatorname{deg}\left(f_{\alpha}\right) \text { or } r=0
$$

Since $r=q \cdot f_{\alpha} \in \operatorname{ker}\left(\phi_{\alpha}\right)$ and the choice of $f_{\alpha}, \operatorname{deg}(r) \nless \operatorname{deg}\left(f_{\alpha}\right)$, hence $r=0 \Rightarrow g \in\left(f_{\alpha}\right)$.
(vi) If $f_{\alpha}=g \cdot h$, either $g(\alpha)=0$ or $h(\alpha)=0$. As above, this implies $g \in k$ or $h \in k^{\times}$, i.e. f or g is irreducible. Now assume, there is and ideal $I \lessgtr k[X]$ satisfying $\left(f_{\alpha}\right) \subsetneq I \subsetneq k[K]$. Let $g \in I \backslash\left(f_{\alpha}\right)$, such that $(g)=I$. Such a g exists by proof of (v). Then $f_{\alpha}=g \cdot h, h \in k[X]$. This implies, that either g or h is a constant polynomial, hence a unit. In the first case, $I=k[X]$ and in the second one $I=\left(f_{\alpha}\right)$, which implies the claim.
(vii) We show the more general argument: If R is a ring, $\mathfrak{m} \triangleleft R$ a maximal ideal, then R / \mathfrak{m} is a field. Let $\bar{a} \in R / \mathfrak{m}$ for some $a \in R, \bar{a} \neq 0$. Let $I:=(\mathfrak{m}, a)$ the smallest ideal in R containing \mathfrak{m} and a. Since $\bar{a} \neq 0$, hence $a \notin \mathfrak{m}$ we have $\mathfrak{m} \subsetneq I$ and since \mathfrak{m} is a maximal ideal, $I=R$. Hence $1 \in I$, so we can write $1=x+a b$ for some $x \in \mathfrak{m}$ and $b \in R$. Then we get

$$
\overline{1}=\overline{x+a b}=\bar{x}+\bar{a} \bar{b}=\bar{a} \bar{b},
$$

hence \bar{a} is invertible in R / \mathfrak{m}.
(viii) Let

$$
f_{\alpha}=\sum_{i=0}^{n} a_{i} X^{i}
$$

Note, that $a_{n}=1$ and $a_{0} \neq 0$, since f_{α} is irreducible. We get

$$
\begin{aligned}
& \Longrightarrow \quad 0=f_{\alpha}(\alpha)=\sum_{i=0}^{n} a_{i} \alpha^{i}=a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n} \\
& \Longrightarrow \quad a_{0}=-\alpha \cdot\left(a_{1}+a_{2} \alpha+\cdots+a_{n-2} \alpha^{n-2}+\alpha^{n-1}\right) \\
& \Longrightarrow 1=-\alpha \cdot\left(\frac{a_{1}}{a_{0}}+\frac{a_{2}}{a_{0}} \alpha+\cdots+\frac{a_{n-2}}{a_{0}} \alpha^{n-2}+\frac{1}{a_{0}} \alpha n-1\right) \\
& \Longrightarrow \frac{1}{\alpha}=-\frac{a_{1}}{a_{0}}-\frac{a_{2}}{a_{0}} \alpha-\cdots-\frac{a_{n-2}}{a_{0}} \alpha^{n-2}-\frac{1}{a_{0}} \alpha^{n-1}
\end{aligned}
$$

Hence $\frac{1}{\alpha} \in k[X]$ and $k[X]$ is a field.
(ix) The family $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ forms a basis of $k[\alpha]$ as a k-vector space.

Example 1.3 Let $k=\mathbb{Q}, L=\mathbb{C}, \alpha=1+i, \beta=\sqrt{2}$. Then the minimal polynomials of α and β are

$$
f_{\alpha}=(X-1)^{2}+1, \quad f_{\beta}=X^{2}-2
$$

Proposition 1.4 (Kronecker) Let k be a field, $f \in k[X], \operatorname{deg}(f) \geqslant 1$.
Then there exists a finite field extension L / k and $\alpha \in L$, such that $f(\alpha)=0$.
proof. W.l.o.g. we may assume, that f is irreducible, since $f=g \cdot h=0 \Rightarrow g=0$ or $h=0$. Then by $1.2(f)=\{f \cdot g \mid g \in k[X]\}$ is a maximal ideal and $L:=k /(f)$ is a field.
Clearly k is a subfield of L, since (f) does not contain any constant polynomial, i.e., if

$$
\pi: k[X] \longrightarrow k[X] /(f)
$$

denotes the residue map, we have $\operatorname{ker}(\pi) \cap k=\{0\}$, hence $\left.\pi\right|_{k}$ is injective. Write

$$
f=\sum_{i=0}^{n} a_{i} X^{i}
$$

Then we have

$$
f(\pi(X))=\sum_{i=0}^{n} a_{i} \pi(X)^{i}=\sum_{i=0}^{n} \pi\left(a_{i}\right) \pi(X)^{i}=\pi\left(\sum_{i=0}^{n} a_{i} X^{i}\right)=\pi(f)=0
$$

hence $\alpha:=\pi(X)$ is a zero of f in L. Moreover L / k is finite with degree $[L: k]=\operatorname{deg}(f)=n$, since $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is basis of L as a k-vector space. For the independence write

$$
\sum_{i=0}^{n-1} \lambda_{i} \alpha^{i}=0, \quad \lambda_{i} \in k
$$

Assume, there is $0 \leqslant j \leqslant n-1$ with $\lambda_{j} \neq 0$. Then the polynomial

$$
g=\sum_{i=0}^{n-1} \lambda_{i} X^{i}
$$

satisfies $g(\alpha)=0$ with $\operatorname{deg}(g)<\operatorname{deg}(f)$, which is not possible by irreducibility of f. It remains to show, that L is generated by the powers of α. We have $\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0$, hence we write

$$
\alpha^{n}=-\left(a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}\right) \in\left(1, \ldots, \alpha^{n-1}\right) .
$$

By induction on n, we get $\alpha^{k} \in\left(1, \ldots, \alpha^{n-1}\right)$ for all $k \geqslant n$.

Example 1.5 Let $k=\mathbb{Q}, f=X^{n}-a$ for some $a \in \mathbb{Q}$. For now we assume that f is irreducible (we may be able to prove this later). Then

$$
L:=\mathbb{Q}[X] /(f)=\mathbb{Q}[X] /\left(X^{n}-a\right) \cong \mathbb{Q}[\sqrt[n]{a}]=\mathbb{Q}(\sqrt[n]{a})
$$

and the degree of the extension is equal to n.

Definition 1.6 Let L / k a field extension, $\alpha \in L$.
(i) α is called algebraic over k, if there exists $f \in \mathbb{X}[X] \backslash\{0\}$, such that $f(\alpha)=0$.
(ii) Otherwise α is called transcendental.
(iii) L / k is called an algebraic field extension, if every $\alpha \in L$ is algebraic over k.

Proposition 1.7 Every finite field extension L / k is algebraic.

proof. Let $\alpha \in L, n:=[L: k]$ the degree of L / k. Then $1, \alpha, \ldots \alpha^{n}$ are linearly dependant over k, i.e. there exist $\lambda_{0}, \ldots, \lambda_{n} \in k, \lambda_{j} \neq 0$ for at least one $0 \leqslant j \leqslant n$, such that

$$
\sum_{i=0}^{n} \lambda_{i} \alpha^{i}=0
$$

Hence the polynomial

$$
f=\sum_{i=0}^{n} \lambda_{i} X^{i} \neq 0
$$

satifies $f(\alpha)=0$, thus α is algebraic over k. Since α was arbitrary, L / k is algebraic.

Proposition 1.8 Let L / k a field extension, $\alpha, \beta \in L$.

(i) If α, β are algebraic over k, then $\alpha+\beta, \alpha-\beta, \alpha \cdot \beta$ are also algebraic over k.
(ii) If $\alpha \neq 0$ is algebraic over k, then $\frac{1}{\alpha}$ is also algebraic over k.
(iii) $k_{L}:=\{\alpha \in L \mid \alpha$ is algebraic over $k\} \subseteq L$ is a subfield of L.
proof. (i) Since $\alpha \in L$ is algebraic over $k \Rightarrow k[\alpha]=k(\alpha)$ is a finite field extension of k. Since β is algebraic over $k \Rightarrow \beta$ is algebraic over $k[\alpha]$, hence $(k[\alpha])[\beta] / k[\alpha]$ is a finite field extension. Further, we have

$$
k \subseteq k[a] \subseteq(k[\alpha])[\beta]=k[\alpha, \beta] .
$$

Thus $k[\alpha, \beta] / k$ is algebraic with Proposition 1.5. This implies the claim, as $\alpha+\beta, \alpha-\beta$, $\alpha \cdot \beta \in k[\alpha, \beta]$.
(ii) If $\alpha \neq 0, \frac{1}{\alpha}$ is algebraic over k with part (i).
(iii) Follows from (i) and (ii).

Definition + proposition 1.9 Let k be a field, $f \in k[X], \operatorname{deg}(f)=n$.
(i) A field extension L / k is called a splitting field of f, if L is the smallest field in which f decomposes into linear factors.
(ii) A splitting field $L(f)$ exists.
(iii) The field extension $L(f) / k$ is algebraic over k.
(iv) For the degree we have $[L(f): k] \leqslant n$!. proof.
(ii) Do this by induction on n.
$\mathbf{n}=\mathbf{1}$ Clear.
$\mathbf{n}>\mathbf{1}$ Write $f=f_{1} \cdots f_{r}$ with irreducible polynomials $f_{i} \in k[X]$. Then f splits if and only every f_{i} splits. Hence we may assume that f is irreducible
Consider $L_{1}:=k /(f)$. Then f has a zero in L_{1}; say α. Then we have $L_{1}=k[\alpha]$. Now we can write $f=(X-\alpha) \cdot g$ for some $g \in k[X]$ with $\operatorname{deg}(g)=n-1$. By induction hypothesis, there exists a splitting field $L(g)$ for g. Then f splits over $L(g)[\alpha]$.
(iii) Follows by part (iv) and Proposition 1.5
(iv) Do this again by induction.
$\mathbf{n}=\mathbf{1}$ Clear.
$\mathbf{n}>1$ In the notation of part (ii) we have $[k[\alpha]: k]=\operatorname{deg}(f)=n$. By the multiplication formula for the degree and induction hypothesis we have

$$
[L(f): k]=[L(g)[\alpha]: k]=[L(g)[\alpha]: L(g)] \cdot[L(g): k] \leqslant n \cdot(n-1)!=n!
$$

Definition + proposition 1.10 Let k be a field.
(i) k is called algebraically closed, if every $f \in k[X]$ splits over k.
(ii) The following statements are equivalent:
(1) k is algebraically closed
(2) Every nonconstant polynomial $f \in k[X]$ has a zero in k.
(3) There is no proper algebraic field extension of k.
(4) If $f \in k[X]$ is irreducible, then $\operatorname{deg}(f)=1$.
proof. ' $(1) \Rightarrow(2)^{\prime}$ Let $f \in k[X]$ be a non-constant polynomial of degree n. Then f splits over k, i.e. we have a presentation

$$
f=\prod_{i=0}^{n}\left(X-\lambda_{i}\right)
$$

with $\lambda_{i} \in k$ for $1 \leqslant i \leqslant n$. Every λ_{i} is a zero. Since $n \geqslant 1$, we find a zero for any nonconstant polynomial.
$'(2) \Rightarrow(3)^{\prime}$ Assume L / k is algebraic, $\alpha \in L$. Let f_{α} be the minimal polynomial of α. By assumption, f_{α} has a zero in k. Since f_{α} is irreducible, we must have $f_{\alpha}=X-\alpha$, hence $\alpha \in k$, since $f \in k[X]$.
${ }^{\prime}(3) \Rightarrow(4)^{\prime}$ Let $f \in k[X]$ irreducible. Then $L:=k[X] /(f)$ is an algebraic field extension. By (3), $L=k$, hence $1=[L: k]=\operatorname{deg}(f)$.
$'(4) \Rightarrow(1)$ ' For $f \in k[X]$ write $f=f_{1} \cdots f_{r}$ with irreducible polynomials f_{i} for $1 \leqslant i \leqslant r$. With (4), $\operatorname{deg}\left(f_{i}\right)=1$ for any i, hence f splits.

Lemma 1.11 Let k be a field. Then there exists an algebraic field extension k^{\prime} / k, such that every $f \in k[X]$ has a zero in k^{\prime}.
proof. For every irreducible polynomial $f \in k[X]$ introduce a symbol X_{f} and consider

$$
R:=k\left[\left\{X_{f} \mid f \in k[X] \text { irreducible }\right\}\right] \supseteq k .
$$

Monomials in R look like

$$
g=\lambda \cdot X_{f_{1}}^{n_{1}} X_{f_{2}}^{n_{2}} \cdots X_{f_{k}}^{n_{k}}
$$

with $\lambda \in k, n_{i} \in \mathbb{N}$. Let $I \preccurlyeq R$ be the ideal generated by the $f\left(X_{f}\right), f \in k[X]$ irreducible. The following claims prove the lemma:
Claim (a) $I \neq R$
Claim (b) There exists a maximal ideal $\mathfrak{m} \geqq R$ containing I.
Claim (c) $k^{\prime}=R / \mathfrak{m}$
To finish the proof, it remains to show the claims.
(a) Assume $I=R$. Then $1 \in I$, i.e.

$$
1=\sum_{i=1}^{k} g_{f_{i}} f_{i}\left(X_{f_{i}}\right)
$$

for suitable $g_{f_{i}} \in R$. Let L / k be a field extension in which all f_{i} have a zero α_{i}. Define a ring homomorphism by

$$
\pi: R \longrightarrow L, X_{f} \mapsto \begin{cases}\alpha_{i}, & f=f_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Then we obtain

$$
1=\pi(1)=\pi\left(\sum_{i=1}^{k} g_{f_{i}} f_{i}\left(X_{f_{i}}\right)\right)=\sum_{i=1}^{k} \pi\left(g_{f_{i}}\right) f_{i}\left(\pi\left(X_{f_{i}}\right)\right)=\sum_{i=1}^{k} \pi\left(g_{f_{i}}\right) f_{i}\left(\alpha_{i}\right)=0,
$$

hence our assumption was false and we have $I \neq R$.
(b) Let \mathcal{S} be the set of all proper ideals of R containing I. By claim $2, I \in \mathcal{S}$. Let now

$$
S_{1} \subseteq S_{2} \subseteq S_{3} \subseteq \ldots
$$

be elements of \mathcal{S}. More generally let N be a totally ordered subset of \mathcal{S} and

$$
S:=\bigcap_{J \in N} J
$$

Then $S \in \mathcal{S}$, hence \mathcal{S} is nonempty. By Zorn's Lemma we know that \mathcal{S} contains a maximal element $\mathfrak{m} \neq R$. Then \mathfrak{m} is maximal ideal of R, since an ideal $J \lessgtr R$ satisfying $\mathfrak{m} \subsetneq J \subsetneq R$ is contained in \mathcal{S}, which is a contradiction considering the choice of \mathfrak{m}.
(c) Clearly k^{\prime} is a field extension of k. Let $f \in k[X]$ be irreducible and $\pi: R \longrightarrow k / \mathfrak{m}$ denote the residue map. Then

$$
f\left(X_{f}\right) \in I \subseteq \mathfrak{m}
$$

i.e. we have

$$
\pi\left(X_{f}\right)=0
$$

and thus $f\left(\pi\left(X_{f}\right)\right)=0$. Hence $\pi\left(X_{f}\right)$ is algebraic over k.
Since k^{\prime} is generated by the $\pi\left(X_{f}\right), k^{\prime} / k$ is algebraic, which finishes the proof.
Theorem 1.12 Let k be a field. Then there exists an algebraic field extension \bar{k} / k such that \bar{k} is algebraically closed. \bar{k} is called the algebraic closure of k.
proof. By Lemma 1.9 there is an algebraic field extension k^{\prime} / k, such that every $f \in k[X]$ has a zero in k^{\prime}. Then let

$$
k_{0}:=k, \quad k_{1}=k_{0}^{\prime}, \quad k_{2}=k_{1}^{\prime}, \quad k_{i+1}=k_{i}^{\prime} \quad \text { for } i \geqslant 1
$$

Clearly k_{i} is algebraic over k for all $i \in \mathbb{N}_{0}$ and $k_{i} \subseteq k_{i+1}$. Define

$$
\bar{k}:=\bigcup_{i \in \mathbb{N}_{0}} k_{i}
$$

Then \bar{k} / k is an algebraic field extension. For $f \in \bar{k}[X]$ we find $i \in \mathbb{N}_{0}$ with $f \in k_{i}[X]$, hence f has a zero in k_{i}. With proposition $1.8, \bar{k}$ is algebraically closed.

§ 2 Simple field extensions

Definition 2.1 A field extension L / k is called simple, if there exists some $\alpha \in L$ such that $L=k[\alpha]$.

Example 2.2 Let $f \in k[X]$ be irreducible, $L:=k[X] /(f)$. Then $L=k[\alpha]$ where $\alpha=\pi(X)=$ \bar{X} and $\pi: k[X] \longrightarrow L$ denotes the residue map. Conversely, if L / k is simple and algebraic, then $L=k[\alpha]$ for some algebraic $\alpha \in L$. Let $f \in k[X]$ be the minimal polynomial of α over k, then

$$
L=k[\alpha]=k(\alpha)=k[X] /(f) .
$$

Proposition 2.3 Let L be a field. Then any finite subgroup G of the multiplicative group L^{\times}is cyclic.
proof. Let $\alpha \in G$ be an element of maximal order, $n:=\operatorname{ord}(\alpha)$. Define

$$
G^{\prime}:=\{\beta \in G: \operatorname{ord}(\beta) \mid n\}
$$

We first show $G^{\prime}=G$ and then $G^{\prime}=(\alpha)$. Let $\beta \in G, m:=\operatorname{ord}(\beta)$. Then

$$
\operatorname{ord}(\alpha \beta)=\operatorname{lcm}(m, n) \leqslant n
$$

by the property of n. Thus $m \mid n$ and $\beta \in G^{\prime}$ and hence $G \subseteq G^{\prime}$. Since $G^{\prime} \subseteq G$ by definition, we have $G^{\prime}=G$. Let now $\gamma \in G^{\prime}$. We have $\gamma^{n}=1$, hence γ is zero of

$$
f=X^{n}-1
$$

f has at most n zeros, but since $|(\alpha)|=n$, we have $(\alpha)=G^{\prime}$ which finishes the proof.

Corollary 2.4 Let k be a finite field. Then every finite field extension L / k is simple.
proof. We have $|L|=|k|^{[L: k]}$ and thus L is also finite. With proposition 2.2 there exists some $\alpha \in L$ such that $L^{\times}=L \backslash\{0\}=(\alpha)$, hence $L=k[\alpha]$, which proves the claim.

Remark 2.5 Let L / k be a finite field extension, $f \in k[X]$ and $\alpha \in L$ a zero of f. Let \bar{k} be an algebraic closure of k and $\sigma: L \longrightarrow \bar{k}$ a homomorphism of field such that $\left.\sigma\right|_{k}=i d_{k}$. Then $\sigma(\alpha)$ is a zero of f.
proof. Write

$$
f=\sum_{i=0}^{n} a_{i} X^{i}
$$

with coefficients $a_{i} \in k$, hence we have $\sigma\left(a_{i}\right)=a_{i}$ for $0 \leqslant i \leqslant n$. We obtain

$$
f(\sigma(\alpha))=\sum_{i=0}^{n} a_{i}(\sigma(\alpha))^{i}=\sum_{i=0}^{n} \sigma\left(a_{i}\right)(\sigma(\alpha))^{i}=\sigma\left(\sum_{i=0}^{n} a_{i} \alpha^{i}\right)=\sigma(f(\alpha))=\sigma(0)=0
$$

which finishes the proof.

Theorem 2.6 Let L / k be a finite field extension of degree $n:=[L: k]$ and \bar{k} an algebraic closure of k. If there exist n different field homomorphisms $\sigma_{1}, \ldots \sigma_{n}: k \longrightarrow L$ such that $\left.\sigma_{i}\right|_{k}=i d_{k}$, then L / k is simple.
proof. Let $L=k\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ for some $r \geqslant 1$ and $\alpha_{i} \in L$. Prove the statement by induction on r. $\mathbf{r}=\mathbf{1} L=k\left[\alpha_{1}\right]$, hence L is simple.
$\mathbf{r}>\mathbf{1}$ Let now $L^{\prime}=k\left[\alpha_{1}, \ldots \alpha_{r-1}\right]$. By hypothesis, L^{\prime} / k is simple, say $L=k[\beta]$. Then we have

$$
L=k\left[\alpha_{1}, \ldots \alpha_{r}\right]=L^{\prime}\left[\alpha_{r}\right]=k[\alpha, \beta]
$$

with $\alpha:=\alpha_{r}$. For $\lambda \in k$ consider

$$
\gamma:=\gamma_{\lambda}=\alpha+\lambda \beta
$$

By remark 2.4 it suffices to show

$$
\sigma_{i}(\gamma) \neq \sigma_{j}(\gamma) \text { for } i \neq j
$$

Assume there are $i \neq j$ such that $\sigma_{i}(\gamma)=\sigma_{j}(\gamma)$. Then

$$
\sigma_{i}(\alpha)+\lambda \sigma_{i}(\beta)=\sigma_{j}(\alpha)+\lambda \sigma_{j}(\beta)
$$

so we get

$$
\sigma_{i}(\alpha)-\sigma_{j}(\alpha)+\lambda\left(\sigma_{i}(\beta)-\sigma_{j}(\beta)\right)=0
$$

Consider the polynomial

$$
g:=\prod_{1 \leqslant i \neq j \leqslant n} \sigma_{i}(\alpha)-\sigma_{j}(\alpha)+X \cdot\left(\sigma_{i}(\beta)-\sigma_{j}(\beta)\right) .
$$

By proposition 2.2 we may assume, that k is infinite. Note that g is not the zero polynomial: If $g=0$, we find $i \neq j$ such that $\sigma_{i}(\alpha)=\sigma_{j}(\alpha)$ and $\sigma_{i}(\beta)=\sigma_{j}(\beta)$. Since α, β generate L, σ_{i} and σ_{j} must be equal on L, which is a contradiction. Therefore we find $\lambda \in k$, such that $g(\lambda) \neq 0$. Hence the minimal polynomial $m_{\gamma_{\lambda}}$ of $\gamma_{\lambda}=\alpha+\lambda \beta$ has at least n zeroes, i.e.

$$
\operatorname{deg}\left(m_{\gamma_{\lambda}}\right) \geqslant n \Rightarrow\left[k\left[\gamma_{\lambda}\right]: k\right] \geqslant n
$$

and hence $k\left[\gamma_{\lambda}\right]=L$.

Proposition 2.7 Let $L=k[\alpha]$ be a simple, finite field extension, \bar{k} an algebraic closure of k. Let $f \in k[X]$ the minimal polynomial of α. Then for every zero β of f in \bar{k} there exists a unique homomorphism of fields $\sigma: L \longrightarrow \bar{k}$ such that $\sigma(\alpha)=\beta$.
proof. The uniqueness is clear. It remains to show the existence. Define

$$
\phi_{\beta}: k[X] \longrightarrow \bar{k}, \quad g \mapsto g(\beta) .
$$

We have $f(\beta)=0$, thus $(f) \subseteq \operatorname{ker}\left(\phi_{\beta}\right)$ and hence ϕ_{β} factors to a homomorphism

$$
\overline{\phi_{\beta}}: L \cong k[X] /(f) \longrightarrow \bar{k}
$$

such that $\phi_{\beta}=\overline{\phi_{\beta}} \circ \pi$ where $\pi: k[X] \longrightarrow k[X] /(f)$ denotes the residue map. Let

$$
\tau: L \longrightarrow k[X] /(f)
$$

be an isomorphism. Then

$$
\sigma:=\overline{\phi_{\beta}} \circ \tau: L \longrightarrow \bar{k}
$$

satisfies

$$
\sigma(\alpha)=\left(\overline{\phi_{\beta}} \circ \tau\right)(\alpha)=\overline{\phi_{\beta}}(\tau(\alpha))=\overline{\phi_{\beta}}(\bar{X})=\overline{\phi_{\beta}}(\pi(X))=\phi_{\beta}(X)=\beta
$$

thus the claim.

Corollary 2.8 Let $f \in k[X]$ be a nonconstant polynomial. Then the splitting field of f over k is unique, i.e. any two splitting fields L, L^{\prime} of f over k are isomorphic.
proof. Let $L=k\left[\alpha_{1}, \ldots \alpha_{n}\right], L^{\prime}=k\left[\beta_{1}, \ldots \beta_{m}\right]$.
Assume that f is irreducible. W.l.o.g. we have $f\left(\alpha_{1}\right)=f\left(\beta_{1}\right)=0$. By Proposition 2.6 we find field homomorphisms

$$
\begin{aligned}
& \sigma_{1}: k\left[\alpha_{1}\right] \longrightarrow k\left[\beta_{2}\right] \text { such that }\left.\sigma_{1}\right|_{k}=\operatorname{id}_{\mathrm{k}} \text { and } \alpha_{1} \mapsto \beta_{1} \\
& \tau_{1}: k\left[\beta_{1}\right] \longrightarrow k\left[\alpha_{1}\right] \text { such that }\left.\tau_{1}\right|_{k}=\operatorname{id}_{\mathrm{k}} \text { and } \beta_{1} \mapsto \alpha_{1}
\end{aligned}
$$

Hence, since $\sigma_{1} \circ \tau_{1}=\mathrm{id}_{\mathrm{k}\left[\beta_{1}\right]}$ and $\tau_{1} \circ \sigma_{1}=\mathrm{id}_{\mathrm{k}\left[\alpha_{1}\right]}, \sigma_{1}$ and τ_{1} are isomorphisms, i.e $k\left[\alpha_{1}\right] \cong k\left[\beta_{1}\right]$. By induction on n the corollary follows.

Definition + proposition 2.9 Let $L / k, L^{\prime} / k$ be field extension.
(i) We define

$$
\begin{gathered}
\operatorname{Hom}_{k}\left(L, L^{\prime}\right):=\left\{\sigma: L \longrightarrow L^{\prime} \text { field homomorphism s.t. }\left.\sigma\right|_{k}=\operatorname{id}_{k}\right\} \\
\operatorname{Aut}_{k}(L):=\left\{\sigma: L \longrightarrow L \text { field automorphism s.t. }\left.\sigma\right|_{k}=\operatorname{id}_{k}\right\}
\end{gathered}
$$

(ii) If L / k is finite, \bar{k} an algebraic closure of k, then

$$
\left|\operatorname{Hom}_{k}\left(L, L^{\prime}\right)\right| \leqslant[L: k] .
$$

proof. Assume first $L=k[\alpha]$ for some algebraic $\alpha \in L$. Let f be the minimal polynomial of α over k, i.e. $f \in k[X], \operatorname{deg}(f)=[L: k]$. By 2.4 and 2.6, the elements oh $\operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})$ correspond bijectively to the zeroes of f. Then we get

$$
\left|\operatorname{Hom}_{k}(L, \bar{k})\right|=\mid\{\text { zeroes of } \mathrm{f} \text { in } \bar{k}\} \mid \leqslant \operatorname{deg}(f)=[L: k]
$$

Now consider the general case. Let $L=k\left[\alpha_{1}, \ldots \alpha_{n}\right]$ and $L^{\prime}=k\left[\alpha_{1}, \ldots \alpha_{n-1}\right] \subseteq L=L^{\prime}\left[\alpha_{n}\right]$. By induction on n we have $\mid \operatorname{Hom}_{k}\left(L^{\prime}, \bar{k}\right) \leqslant\left[L^{\prime}: k\right]$. Let now

$$
f=\sum_{i=0}^{d} a_{i} X^{i} \in L^{\prime}[X]
$$

with coefficients $a_{i} \in L^{\prime}$ be the minimal polynomial of α_{n} over L^{\prime}. Let $\sigma \in \operatorname{Hom}_{k}(L, \bar{k})$ and $\sigma^{\prime}=\left.\sigma\right|_{L^{\prime}} \in \operatorname{Hom}_{k}\left(L^{\prime}, \bar{k}\right), f^{\sigma^{\prime}}:=\sum_{i=0}^{d} \sigma^{\prime}\left(a_{i}\right) X^{i}$. Then

$$
f^{\sigma^{\prime}}\left(\sigma\left(\alpha_{n}\right)\right)=\sum_{i=0}^{d} \sigma^{\prime}\left(a_{i}\right)\left(\sigma\left(\alpha_{n}\right)\right)^{i}=\sum_{i=0}^{d} \sigma\left(a_{i}\right)\left(\sigma\left(\alpha_{n}\right)\right)^{i}=\sigma\left(\sum_{i=0}^{d} a_{i} \alpha_{n}^{i}\right)=0
$$

Thus

$$
\left|\left\{\operatorname{Hom}_{L^{\prime}}(L, \bar{k})\right\}\right|=\left|\left\{\sigma \in \operatorname{Hom}_{k}(L, \bar{k})|\sigma|_{L^{\prime}}=\operatorname{id}_{L^{\prime}}\right\}\right| \leqslant \operatorname{deg}\left(f^{\sigma^{\prime}}\right)=\operatorname{deg}(f)=\left[L^{\prime}: L\right]
$$

So all in all we have

$$
\left|\operatorname{Hom}_{k}(L, \bar{k})\right| \leqslant\left|\operatorname{Hom}_{k}\left(L^{\prime}, \bar{k}\right)\right| \cdot\left[L: L^{\prime}\right] \leqslant\left[L: L^{\prime}\right] \cdot\left[L^{\prime}: k\right]=[L: k],
$$

which is exactly the assignment.

Definition 2.10 Let k be a field, $f=\sum_{i=0}^{d} a_{i} X^{i} \in k[X], \bar{k}$ an algebraic closure of $k, L / k$ an algebraic field extension.
(i) f is called separable over k, if f has $\operatorname{deg}(f)$ different roots in \bar{k}, i.e. there are no multiple roots.
(ii) $\alpha \in L$ is called separable over k, if the minimal polynomial of α over k is separable.
(iii) L / k is called separable, if any $\alpha \in L$ is separable over k.
(iv) We define the formal derivative of f by

$$
f^{\prime}:=\sum_{i=1}^{d} i \cdot a_{i} X^{i-1}
$$

We have well known properties of the derivative:

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime}, \quad 1^{\prime}=0, \quad(f \cdot g)^{\prime}=f \cdot g^{\prime}+f^{\prime} \cdot g
$$

Proposition 2.11 Let

$$
f=\prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in k[X], \quad a_{i} \in \bar{k} \text { for } 1 \leqslant i \leqslant n
$$

Then the following statements are equivalent:
(i) f is separable.
(ii) $\left(X-\alpha_{i}\right) \nmid f^{\prime}$ for $1 \leqslant i \leqslant n$.
(iii) $\operatorname{gcd}\left(f, f^{\prime}\right)=1$ in $k[X]$.
proof. '(i) \Leftrightarrow (ii)' We have

$$
f^{\prime}=\sum_{i=1}^{n} \prod_{j \neq i}\left(X-\alpha_{j}\right),
$$

thus we get

$$
\left(X-\alpha_{i}\right)\left|f^{\prime} \Leftrightarrow\left(X-\alpha_{i}\right)\right| \prod_{j \neq i}\left(X-\alpha_{j}\right) \Leftrightarrow \alpha_{i}=\alpha_{j} \text { for some } i \neq j .
$$

'(ii) \Rightarrow (iii)' Assume $\left(X-\alpha_{i}\right) \nmid f^{\prime}$ for all $1 \leqslant i \leqslant n$. Then

$$
\operatorname{gcd}\left(f, f^{\prime}\right)=1 \text { in } \bar{k}[X] \Longrightarrow \operatorname{gcd}\left(f, f^{\prime}\right)=1 \text { in } k[X] .
$$

'(iii) $\Rightarrow\left(\right.$ ii) ${ }^{\prime}$ Let now $\operatorname{gcd}\left(f, f^{\prime}\right)=1$ in $k[X]$. Then we can write

$$
1=a f+b f^{\prime}, a, b \in k[X] .
$$

Since again $k[X] \subseteq \bar{k}[X]$, we can write $1=a f+b f^{\prime}$ for $a, b \in \bar{k}[X]$ an hence we obtain $\operatorname{gcd}\left(f, f^{\prime}\right)=1$ in $\bar{k}[X]$. This implies

$$
\left(X-\alpha_{i}\right) \nmid f^{\prime} \text { for all } 1 \leqslant i \leqslant n,
$$

which was to be shown.
Corollary 2.12 (i) An irreducible polynomial $f \in k[X]$ is separable if and only if $f^{\prime} \neq 0$.
(ii) Any algebraic field extension in characteristic 0 is separable.

Example 2.13 Let $\operatorname{char}(k)=p>0$. Then

$$
X^{p}-1=(X-1)^{p}
$$

Let $k=\mathbb{F}_{p}(t)$ and $f=X^{p}-t \in \mathbb{F}_{p}(t)[X]$. Then $f^{\prime}=0$, hence f is not separable, but f is irreducible in $\mathbb{F}_{p}(t)[X]$.

Definition + proposition 2.14 Let L / k be a finite field extension, \bar{k} an algebraic closure of k and L.
(i) $[L: k]_{s}:=\left|\operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})\right|$ is called the degree of separability of L / k.
(ii) If $L=k[\alpha]$ for some separable $\alpha \in L$ with minimal polynomial m_{α} over k, then

$$
[L: k]_{s}=\operatorname{deg}\left(m_{\alpha}\right)=[L: k] .
$$

(iii) If $L=k[\alpha]$ for some $\alpha \in L, \operatorname{char}(k)=p>0$, then there exists $n \geqslant 0$, such that

$$
[L: k]=p^{n} \cdot[L: k]_{s}
$$

(iv) If $k \subseteq \mathbb{F} \subseteq L$ is an intermediate field extension, then

$$
[L: k]_{s}=[L: \mathbb{F}]_{s} \cdot[\mathbb{F}: k]_{s}
$$

proof. (i) This follows from Propoition 2.6:

$$
[L: k]_{s}=\left|\operatorname{Hom}_{k}(L, \bar{k})\right|=\mid\{\text { different zeroes of } f\} \mid=n=[L: k] .
$$

(iii) Write

$$
f=\sum_{i=0}^{n} a_{i} X i .
$$

If α is separable over k, we are done with part (ii). Otherwise by Corollary 2.11 we have

$$
f^{\prime}=\sum_{i=1}^{n} i \cdot a_{i} \cdot X^{i-1} \stackrel{!}{=} 0 \Longleftrightarrow i \cdot a_{i} \equiv 0 \quad \bmod p \text { for all } 0 \leqslant i \leqslant n
$$

Thus we can write $f=g\left(X^{p}\right)$ for some $g \in k[X]$. Continue this way until we can write $f=g\left(X^{p^{n}}\right)$ for some $n \in \mathbb{N}_{0}$ and separable g. Then

$$
[k[\alpha]: k]_{s}=\mid\{\text { zeroes of } g \text { in } \bar{k}\} \mid=\operatorname{deg}(g)
$$

and thus we obtain

$$
[k[\alpha]: k]=\operatorname{deg}(f)=\operatorname{deg}(g) \cdot p^{n}=p^{n} \cdot[k[\alpha]: k]_{s} .
$$

(iv) Consider first the simple case $L=k(\alpha)$. Let

$$
f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{F}[X]
$$

be the minimal polynomial of α over \mathbb{F}. Let $\tau \in \operatorname{Hom}_{k}(\mathbb{F}, \bar{k})$ and let

$$
f^{\tau}=\sum_{i=0}^{n} \tau\left(a_{i}\right) X^{i} .
$$

Given $\sigma \in \operatorname{Hom}_{k}(L, \bar{k})$ with $\left.\sigma\right|_{\mathbb{F}}=\tau$, notice that $\sigma(\alpha)$ is a zero of f^{τ}. Moreover by Proposition 2.6, every zero β of f^{τ} determines a unique σ such that $\sigma(\alpha)=\beta$. Thus we have

$$
\begin{aligned}
\left|\left\{\sigma \in \operatorname{Hom}_{k}(L, \bar{k})|\sigma|_{\mathbb{F}}=\tau\right\}\right| & =\left|\left\{\beta \in \bar{k} \mid f^{\tau}(\beta)=0\right\}\right| \\
& =|\{\beta \in \bar{k} \mid f(\beta)=0\}| \stackrel{2.6}{=}[L: \mathbb{F}]_{s} .
\end{aligned}
$$

We conclude

$$
\begin{aligned}
{[L: k]_{s} } & =\left|\operatorname{Hom}_{k}(L, \bar{k})\right|=\left|\bigcup_{\tau \in \operatorname{Hom}_{k}(\mathbb{F}, \bar{k})}\left\{\sigma \in \operatorname{Hom}_{k}(L, \bar{k})|\sigma|_{\mathbb{F}}=\tau\right\}\right| \\
& =\left|\left\{\sigma \in \operatorname{Hom}_{k}(L, \bar{k})|\sigma|_{\mathbb{F}}=\tau\right\}\right| \cdot\left|\operatorname{Hom}_{k}(\mathbb{F}, \bar{k})\right| \\
& =[L: \mathbb{F}]_{s} \cdot[\mathbb{F}: k]_{s}
\end{aligned}
$$

For the general case we can write $L=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Define $L_{i}:=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{i}\right), L_{0}:=\mathbb{F}$
and $L_{n}=L$. Then L_{i} / L_{i-1} is simple and by the special case above we get

$$
\begin{aligned}
{[L: k]_{s} } & =\left[L_{n}: L_{n-1}\right]_{s} \cdot\left[L_{n-1}: k\right]_{s} \\
& \vdots \\
& =\left[L_{n}: L_{n-1}\right]_{s} \cdots\left[L_{2}: L_{1}\right]_{s} \cdot\left[L_{1}: L_{0}\right]_{s} \cdot\left[L_{0}: k\right]_{s} \\
& =\left[L_{n}: L_{n-1}\right]_{s} \cdots\left[L_{2}: L_{1}\right]_{s} \cdot\left[L_{1}: \mathbb{F}\right]_{s} \cdot[\mathbb{F}: k]_{s} \\
& =\left[L_{n}: L_{n-1}\right]_{s} \cdots\left[L_{2}: \mathbb{F}\right]_{s} \cdot[\mathbb{F}: k]_{s} \\
& \vdots \\
& =\left[L_{n}: \mathbb{F}\right]_{s} \cdot[\mathbb{F}: k]_{s} \\
& =[L: \mathbb{F}]_{s} \cdot[\mathbb{F}: k]_{s},
\end{aligned}
$$

which implies the claim.

Proposition 2.15 A finite field extension L / k is separable if and only if $[L: k]=[L: k]_{s}$. proof. $\quad ' \Rightarrow$ ' Let $L=k\left[\alpha_{1}, \ldots \alpha_{n}\right]$. Prove this by induction on n.
$\mathbf{n}=\mathbf{1}$ This is proposition 12.2 (ii)
$\mathbf{n}>\mathbf{1}$ Let $L^{\prime}=k\left[\alpha_{1}, \ldots \alpha_{n-1}\right]$. Then by induction hypothesis $\left[L^{\prime}: k\right]_{s}=\left[L^{\prime}: k\right]$. Moreover $\left[L: L^{\prime}\right]_{s}=\left[L: L^{\prime}\right]$, since L / L^{\prime} is simple by $L=L^{\prime}\left[\alpha_{n}\right]$. By proposition 12.2 (iv) we get

$$
[L: k]_{s}=\left[L: L^{\prime}\right]_{s} \cdot\left[L^{\prime}: k\right]_{s}=\left[L: L^{\prime}\right] \cdot\left[L^{\prime} \cdot k\right]=[L: k] .
$$

$' \Leftarrow '$ Let $\alpha \in L$ and $f=m_{\alpha} \in k[X]$ its minimal polynomial. If $\operatorname{char}(k)=0, f$ is separable, so α is separable by corollary 2.11 . Let now $\operatorname{char}(k)=p>0$. By proposition 12.2 there exists $n \geqslant 0$ such that

$$
[k[\alpha]: k]=p^{n} \cdot[k[\alpha]: k]_{s}
$$

We find
$[L: k]=[L: k[\alpha]] \cdot[k[\alpha]: k] \geqslant[L: k[\alpha]]_{s} \cdot p^{n}[k[\alpha]: k]_{s}=p^{n}[L: k]_{s}=p^{n}[L: k]$,

Hence we must have $n=0$, i.e. $[k[\alpha]: k]=[k[\alpha]: k]_{s}$. Thus α is separable over k.

§ 3 Galois extensions

Definition 3.1 A field extension L / k is called normal, if there is a subset $\mathcal{F} \subseteq k[X]$ such that L is the smallest field which any $f \in \mathcal{F}$ splits over.

Remark 3.2 Let L / k be a normal field extension, \bar{k} an algebraic closure of k. Then

$$
\operatorname{Hom}_{k}(L, \bar{k})=\operatorname{Aut}_{k}(L) .
$$

proof. '〇' Clear.
' \subseteq ' Let L be the splitting field of \mathcal{F}. Let

$$
f=\sum_{i=0}^{d} a_{i} X^{i} \in \mathcal{F}
$$

and $\alpha \in L$ such that $f(\alpha)=0$. Let $\sigma \in \operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})$. Then

$$
f(\sigma(\alpha))=\sum_{i=0}^{d} a_{i} \sigma(\alpha)^{i}=\sum_{i=0}^{d} \sigma\left(a_{i}\right) \sigma(\alpha)^{i}=\sigma\left(\sum_{i=0}^{d} a_{i} \alpha^{i}\right)=\sigma(f(\alpha))=0,
$$

hence $\sigma(\alpha)$ is zero of f. Since f splits over L, i.e. all zeroes of f are in L, we have $\sigma(\alpha) \in L$. Moreover L is generated over k by the zeroes of $f \in \mathcal{F}$, thus $\sigma(L) \subseteq L$ and hence we get $\sigma \in \operatorname{Hom}_{k}(L, L)$.
It remains to show bijectivity. σ is clearly injective. For the surjectivity consider that σ permutes all the zeroes of any $f \in \mathcal{F}$. Finally $\sigma \in \operatorname{Aut}_{k}(L)$.

Definition 3.3 An algebraic field extension L / k is called Galois extension or Galois, if it is normal and separable. In this case, the Galois group of L / k is defined as

$$
\operatorname{Gal}(L, k):=\operatorname{Aut}_{k}(L) .
$$

Proposition 3.4 A finite field extension L / k is Galois if and only if $\left|\operatorname{Aut}_{k}(L)\right|=[L: k]$. proof. ' \Rightarrow ' We have

$$
\left|\operatorname{Aut}_{k}(L)\right|=\left|\operatorname{Hom}_{k}(L, \bar{k})\right|=[L: k]_{s}=[L: k]
$$

' \Leftarrow ' We have to show that L / k is separable and normal. First we see

$$
[L: k]=\left|\operatorname{Aut}_{\mathrm{k}}(\mathrm{~L})\right| \leqslant\left|\operatorname{Hom}_{k}(L, \bar{k})\right|=[L: k]_{s} \leqslant[L: k]
$$

Hence we have equality on each inequality, i.e. $[L: k]=[L: k]_{s}$ and L / k is separable.
By Theorem 2.5 we know that L / k is simple, say $L=k[\alpha]$ for some $\alpha \in L$.
Let $m_{\alpha} \in k[X]$ be the minimal polynomial of α over k. Moreover let $\beta \in \bar{k}$ be another zero of m_{α}. Then there exists $\sigma \in \operatorname{Hom}_{k}(L, \bar{k})$ such that $\sigma(\alpha)=\beta$. By the (in-) equality above we know $\operatorname{Aut}_{\mathrm{k}}(\mathrm{L})=\operatorname{Hom}_{k}(L, \bar{k})$, hence $\sigma(\beta) \in L$. Since β was arbitrary, m_{α}, f splits over L, i.e. L is the splitting field of f over k. Thus L / k is normal and finally Galois.

Example 3.5 All quadratic field extensions are normal. Moreover, if $\operatorname{char}(k) \neq 2$, then all quadratic field extensions of k are Galois.

Remark 3.6 Let L / k be a Galois extension and $k \subseteq K \subseteq L$ an intermediate field.
(i) Then L / K is Galois and

$$
\operatorname{Gal}(L / K) \leqslant \operatorname{Gal}(L / k)
$$

(ii) If K / k is Galois, then $\operatorname{Gal}(L / K) \preccurlyeq \operatorname{Gal}(L / k)$ is a normal subgroup and

$$
\operatorname{Gal}(L / k) / \operatorname{Gal}(L / K) \cong \operatorname{Gal}(K / k) .
$$

proof. (i) Clearly L / K is normal, since L is the splitting field for the same polynomials as in L / k. Let now $\alpha \in L$. Then the minimal polynomial m_{α} of α over K divides the minimal polynomial m_{α}^{\prime} of α over k, since $k \subseteq K$. Since m_{α}^{\prime} has no multiple roots, m_{α} does not either and hence L / K is separable and thus Galois.
(ii) Define

$$
\rho: \operatorname{Gal}(L / k) \longrightarrow \operatorname{Gal}(K / k),\left.\sigma \mapsto \sigma\right|_{K} .
$$

ρ is well defined since $\left.\sigma\right|_{K} \in \operatorname{Hom}_{K} k(K, \bar{k})=\operatorname{Aut}_{\mathrm{k}}(\mathrm{K})=\operatorname{Gal}(K / k)$ as K / k is Galois:

$$
[K: k]=\left|\operatorname{Aut}_{k}(K)\right| \leqslant\left|\operatorname{Hom}_{k}(K, \bar{k})\right| \leqslant[K: k] .
$$

Moreover ρ is surjective. For the kernel we get

$$
\operatorname{ker}(\rho)=\left\{\sigma \in \operatorname{Gal}(L / k)|\sigma|_{K}=\operatorname{id}_{K}\right\}=\operatorname{Gal}(L / K)
$$

and thus we obtain $\operatorname{Gal}(L / k) / \operatorname{Gal}(L / K) \cong \operatorname{Gal}(K / k)$.

Theorem 3.7 (Main theorem of galois theory) Let L / k be a finite Galois extension and $G:=$ $\operatorname{Gal}(L / k)$. Then the subgroups $H \leqslant G$ correspond bijectively to the intermediate fields $k \subseteq K \subseteq L$. Explicitly we have inverse maps

$$
\begin{gathered}
K \mapsto \operatorname{Gal}(L / K) \leqslant G \\
H \mapsto L^{H}:=\{\alpha \in L \mid \sigma(\alpha)=\alpha \text { for all } \sigma \in H\} .
\end{gathered}
$$

proof. Clearly L^{H} is a field for any $H \leqslant G$. We now have to show
(i) $\operatorname{Gal}\left(L / L^{H}\right)=H$ for any $H \leqslant G$.
(ii) $L^{\operatorname{Gal}(L / K)}=K$ for any intermediate field $k \subseteq K \subseteq L$.

Theese prove the theorem.
(i) We show both inclusion.
' \supseteq ' Clear by definition.
' \subseteq ' It suffices to show $\left|\operatorname{Gal}\left(L / L^{H}\right)\right| \leqslant|H|$. By 3.4(i) we have

$$
\left|\operatorname{Gal}\left(L / L^{H}\right)\right|=\left[L: L^{H}\right] .
$$

By theorem 2.5 L / L^{H} is simple, say $L=L^{H}[\alpha]$. Define

$$
f=\prod_{\sigma \in H}(X-\sigma(\alpha))
$$

with $\operatorname{deg}(f)=|H|$. Further, since id $\in H$, we have $f(\alpha)=0$. Clearly $f \in L[X]$. We want to show that $f \in L^{H}[X]$. Therefore for $\tau \in H$ define

$$
g^{\tau}:=\sum_{i=0}^{n} \tau\left(a_{i}\right) X^{i} \text { for } g=\sum_{i=0}^{n} a_{i} X^{i}
$$

Then for f as defined above we have

$$
f^{\tau}=\prod_{\sigma \in H}(X-\tau(\sigma(\alpha)))=\prod_{\sigma \in H}(X-\sigma(\alpha))=f
$$

hence $f \in L^{H}[X]$. From $f(\alpha)=0$ we know that the minimal polynomial m_{α} of α over L^{H} divides f, thus

$$
\left|\operatorname{Gal}\left(L / L^{H}\right)\right|=\left[L: L^{H}\right]=\operatorname{deg}\left(m_{\alpha}\right) \leqslant \operatorname{deg}(f)=|H|
$$

(ii) ' \supseteq ' Clear by definition.
' \subseteq ' Let $H:=\operatorname{Gal}(L / K)$. Since $K \subseteq L^{H}$ it suffices to show $\left[L^{H}: K\right]=1$. Since L^{H} / K is separable, this is equivalent to $\left[L^{H}: K\right]_{s}=1$. Let now $\sigma \in \operatorname{Hom}_{K}\left(L^{H}, \bar{k}\right)$. By 2.6 we can extend σ to

$$
\tilde{\sigma}: L \longrightarrow \bar{k}
$$

with $\left.\tilde{\sigma}\right|_{L^{H}}=\sigma$. Explicitly: Let $L=L^{H}[\alpha]$ and $f \in L^{H}[X]$ its minimal polynomial. Choose a zero $\beta \in \bar{k}$ of f^{σ}. Then by 2.6 there exists $\tilde{\sigma}: L \longrightarrow \bar{k}$ with $\tilde{\sigma}(\alpha)=\beta$ and $\left.\tilde{\sigma}\right|_{L^{H}}=\sigma$. We get $\tilde{\sigma} \in \operatorname{Gal}(L / K)=H$ and $\sigma=\left.\tilde{\sigma}\right|_{L^{H}}=\operatorname{id}_{K}$ which finally implies $\left[L^{H}: K\right]=1$.

Remark 3.8 An intermediate field $k \subseteq K \subseteq L$ is Galois over k if and only if $\operatorname{Gal}(L / K) \preccurlyeq$ $\operatorname{Gal}(L / k)$ is a normal subgroup.
proof. ' \Rightarrow ' If K / k is Galois, then $\operatorname{Gal}(L / K)=\operatorname{ker}(\rho)$ is a normal subgroup by 3.5.
$' \Leftarrow$ ' Conversely let $\operatorname{Gal}(L / K)=: H \preccurlyeq \operatorname{Gal}(L / k)$ be a normal subgroup. By 3.4 it suffices to show $\operatorname{Hom}_{\mathrm{k}}(\mathrm{K}, \overline{\mathrm{k}})=\operatorname{Aut}_{\mathrm{k}}(\mathrm{K})$. Let now $\sigma \in \operatorname{Hom}_{\mathrm{k}}(\mathrm{K}, \overline{\mathrm{k}})$ and $\alpha \in K$. Extend σ to $\tilde{\sigma}: L \longrightarrow \bar{k}$. Then $\tilde{\sigma} \in \operatorname{Gal}(L / k)$. By the theorem it suffices to show that $\sigma(\alpha) \in L^{\operatorname{Gal}(L / K)}=K$, i.e. $\sigma(K) \subseteq K$. Let $\tau \in \operatorname{Gal}\left(L / L^{H}\right)$. Then, since $\operatorname{Gal}(L / K)$ is normal, we obtain

$$
\tau(\sigma(\alpha))=\tau(\tilde{\sigma}(\alpha))=\left(\tilde{\sigma} \circ \tau^{\prime}\right)(\alpha)=\tilde{\sigma}(\alpha)=\sigma(\alpha),
$$

which implies the claim.

Example 3.9 Let $k=\mathbb{Q}, f=X^{5}-4 X+2 \in \mathbb{Q}[X]$. Further let $L=L(f)$ be the splitting field of f over \mathbb{Q}. What is $\operatorname{Gal}(L / \mathbb{Q})$?.
We first want to show that f is irreducible. But this immediately follows by By Eisenstein's criterion for irreducibility with $p=2$.
Thus L is an extension of $\mathbb{Q} /(f)$. Therefore $[L: \mathbb{Q}]$ is multiple of $[\mathbb{Q} /(f)]=5$, hence $|\operatorname{Gal}(L / \mathbb{Q})|$ is divisible by 5 . By Lagrange's theorem we know that $\operatorname{Gal}(L / \mathbb{Q})$ contains an element of order 5 . Further note that f has exactly 3 zeroes in \mathbb{R}. With

$$
\lim _{x \rightarrow \infty} f(x)=-\infty<0, \quad f(0)=2>0, \quad f(1)=-1<0, \quad \lim _{x \rightarrow-\infty} f(x)=\infty>0
$$

we see by the intermediate value theorem that f has at least 3 zeroes. Moreover

$$
f^{\prime}=5 X^{4}-4=5 \cdot\left(X^{4}-\frac{4}{5}\right)=5 \cdot\left(X^{2}-\frac{2}{\sqrt{5}}\right) \cdot\left(X^{2}+\frac{2}{\sqrt{5}}\right)
$$

Obviously, since the second factor has not real zeroes, the derivative of f has 2 zeroes, hence f has at most 3 zeroes. Together we obtain that f has exactly 3 zeroes. Since f splits over \mathbb{C}, f has two more conjugate zeroes in \mathbb{C}, say $\beta, \bar{\beta}$. Hence we know that the conjugation in \mathbb{C} must be an element of $\operatorname{Gal}(L / \mathbb{Q})$.
To sum it up, we know: $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic to a subgroup of S_{5}, contains the conjugation, which corresponds to a transposition and moreover an element of order 5, i.e. a 5 - cycle. But these two elements generate the whole group S_{5}. Hence we have $\operatorname{Gal}(L / \mathbb{Q}) \cong S_{5}$.

Proposition 3.10 (Cyclotomic fields) Let k be a field, $n \in \mathbb{N}$, $\operatorname{char}(k) \nmid n$ and L the splitting field of the polynomial $f=X^{n}-1$.
Then L / k is Galois and $\operatorname{Gal}\left(L_{n} / k\right)$ is isomorphic to a subgroup of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
proof. We have $f^{\prime}=n X^{n-1}$ and $f^{\prime}=0 \Leftrightarrow X=0$ but $f(0) \neq 0$, hence f^{\prime} and f_{n} are coprime. Thus f is separable. Since L is the splitting field of f by definition, L / k is normal, thus Galois. The zeroes of f form a group $\mu_{n}(k)$ under multiplication. By proposition $2.3 \mu_{n}(k)$ is cyclic. Let ζ_{n} be a generator of $\mu_{n}(k)$. Define a map

$$
\chi_{n}: \operatorname{Gal}\left(L_{n} / k\right) \longrightarrow(\mathbb{Z} / n \mathbb{Z})^{\times} \sigma \mapsto m \text { if } \sigma\left(\zeta_{n}\right)=\zeta_{n}^{m}
$$

where m is relatively coprime to n. We obtain that χ_{n} is a homomorphism of groups since for $\sigma_{1}, \sigma_{2} \in \operatorname{Gal}\left(L_{n} / k\right)$ we have $\sigma_{2} \sigma_{1}\left(\zeta_{n}\right)=\sigma_{2}\left(\zeta_{n}^{k_{1}}\right)=\left(\zeta_{n}^{k_{1}}\right)^{k_{2}}=\zeta_{n}^{k_{1} k_{2}}$ and hence

$$
\chi_{n}\left(\sigma_{1} \sigma_{2}\right)=k_{1} \cdot k_{2}=\chi_{n}\left(\sigma_{1}\right) \cdot \chi_{n}\left(\sigma_{2}\right)
$$

Moreover χ_{n} is injective, since

$$
\chi_{n}(\sigma)=1 \Leftrightarrow \sigma\left(\zeta_{n}\right)=\zeta_{n} \Leftrightarrow \sigma=\mathrm{id} .
$$

This proofs the proposition. Recall that $\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\phi(n)$ Where ϕ is Euler's ϕ-function.

§ 4 Solvability of equations by radicals

Definition + remark 4.1 Let k be a field, $f \in k[X]$ separable.
(i) Let $L(f)$ be the splitting field of f over k. The Galois group of the equation $f=0$ is defined by

$$
\operatorname{Gal}(f):=\operatorname{Gal}(L(f) / k)
$$

(ii) There exists an injective homomorphism of groups $\operatorname{Gal}(f) \longrightarrow S_{n}$ where $n:=\operatorname{deg}(f)$.
(iii) If L / k is a finite, separable field extension, the $\operatorname{Aut}_{\mathrm{k}}(\mathrm{L})$ is isomorphic to a subgroup of S_{n}, where $n=[L: k]$.
proof. (ii) Clear, since automorphisms permute the zeroes of f, of which we have at most n.
(iii) We know L / k is simple, say $L=k[\alpha]$ for some $\alpha \in L$. Let m_{α} be the minimal polynomial of α over k. Then $\operatorname{deg}(f)=n$. Every $\sigma \in \operatorname{Aut}(\mathrm{L} / \mathrm{k}) \operatorname{maps} \alpha$ to a zero of f and the same for every zero of f. Hence the claim follows.

Definition 4.2 (i) A simple field extension $L=k[\alpha]$ of a field k is called an elementary radical extension if either
(1) α is a root of unity, i.e. a zero of the polynomial $X^{n}-1$ for some $n \in \mathbb{N}$.
(2) α is a root of $X^{n}-\gamma$ for some $\gamma \in k, n \in \mathbb{N}$ such that $\operatorname{char}(k) \nmid n$.
(3) α is a root of $X^{p}-X-\gamma$ for somme $\gamma \in k$ where $p=\operatorname{char}(k)$.

In the following, we will denote (1), (2) and (3) as the three types of elementary radical extensions.
(ii) A finite field extension L / k is called a radical extension, if there is a field extension L^{\prime} / L and a chain of field extension

$$
k=L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{m}=L^{\prime}
$$

such that L_{i} / L_{i-1} is an elementary radical extension for every $1 \leqslant i \leqslant m$.
Example 4.3 Let $k=\mathbb{Q}, f=X^{3}-3 X+1$. The zeroes of f (in \mathbb{C}) are

$$
\alpha_{1}=\zeta+\zeta^{-1} \in \mathbb{R}, \alpha_{2}=\zeta^{2}+\zeta^{-2} \text { and } \alpha_{3}=\zeta^{4}+\zeta^{-4}
$$

where $\zeta=e^{\frac{2 \pi i}{9}}$ is a primitive ninth root of unity. We show this exemplarily for α_{1}. We have

$$
f\left(\alpha_{1}\right)=\left(\alpha_{1}^{3}-3 \alpha_{1}+1\right)=\zeta^{3}+3 \zeta+3 \zeta^{-1}+\zeta^{-3}-3 \zeta-3 \zeta^{-1}+1=\zeta^{3}+\zeta-3+1=0
$$

where we use $\zeta^{-3}=\overline{\zeta^{-3}}$ and since $z+\bar{z}=2 \cdot \mathfrak{R e}(z)$ for any $z \in \mathbb{C}$ we have
$\zeta^{3}+\zeta^{-3}=2 \cdot \mathfrak{R e}\left(\zeta^{3}\right)=2 \cdot \mathfrak{R e}\left(e^{\frac{2 \pi i}{3}}\right)=2 \cdot \mathfrak{R e}\left(\cos \frac{2 \pi}{3}+i \cdot \sin \frac{2 \pi}{3}\right)=2 \cdot \cos \frac{2 \pi}{3}=2 \cdot\left(-\frac{1}{2}\right)=-1$.

Further we have

$$
\alpha_{1}^{2}=\zeta^{2}+2 \zeta^{-2}+2=\alpha_{2}+2,
$$

hence $\alpha_{2} \in \mathbb{Q}\left(\alpha_{1}\right)$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}=0$, hence $\alpha_{3} \in \mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)=\mathbb{Q}\left(\alpha_{1}\right)$.
This means that $\mathbb{Q}\left(\alpha_{1}\right)$ contains all the zeroes of f, i.e. is a splitting field of f. We conclude

$$
\mathbb{Q}\left(\alpha_{1}\right) \cong \mathbb{Q} /(f), \quad\left[\mathbb{Q}\left(\alpha_{1}\right): \mathbb{Q}\right]=3
$$

From the f we see that $\mathbb{Q}\left(\alpha_{1}\right) / \mathbb{Q}$ is not an elementary radical extension, but a radical extension, since for $\mathbb{Q}(\zeta)$ we have $\mathbb{Q}\left(\alpha_{1}\right) \subseteq \mathbb{Q}(\zeta)$ and $\mathbb{Q}(\zeta) / \mathbb{Q}$ is an elementary radical extension.

Definition 4.4 Let k be afield, $f \in k[X]$ a separable, non-constant polynomial. We say f is solvable by radicals, if the splitting field $L(f)$ is a radical extension.

Remark 4.5 Let L / k be an elementary field extension, referring to Definition 4.1 of type
(1) $L=k[\zeta]$ for some root of unity ζ (primitive for some suitable $n \in \mathbb{N}$, $\operatorname{char}(k) \nmid n)$. Then L / k is Galois with abelian Galois group

$$
\operatorname{Gal}(L / k) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

(2) $L=k[\alpha]$ where α is a root of $X^{n}-\gamma$ for some $\gamma \in k, n \in \mathbb{N}, \operatorname{char}(k) \nmid n$. If k contains the n-th roots of unity, i.e. $\mu_{n}(\bar{k})$, then L / k is Galois with cyclic Galois group.
(3) $L=k[\alpha]$, where α is a root of $X^{p}-X-\gamma$ for some $\gamma \in k^{\times}$. Then L / k is Galois with Galois group

$$
\operatorname{Gal}(L / k) \cong \mathbb{Z} / p \mathbb{Z}
$$

proof. (1) We proved this in proposition 3.9.
(2) Let $\zeta \in k$ be a primitive n-th root of unity. Then $\zeta^{i} \cdot \alpha$ is a zero of $X^{n}-\gamma$, where we assume n to be minimal sucht that $X^{n}-\gamma$ is irreducible. Then L contains all roots of $X^{n}-\gamma$, i.e. L / k is normal and thus Galois with

$$
|\operatorname{Gal}(L / k)|=[L: k]=\operatorname{deg}\left(X^{n}-\gamma\right)=n
$$

Since the automorphism $\sigma \in \operatorname{Gal}(L / k)$ that maps $\alpha \mapsto \zeta \cdot \alpha$ has order $n, \operatorname{Gal}(L / k)$ is cyclic.
(3) $f=X^{p}-X-\gamma$ has p zeroes in $L=k[\alpha]$. Since $f(\alpha)=0$, we have

$$
f(\alpha+1)=(\alpha+1)^{p}-(\alpha+1)-\gamma=\alpha^{p}+1-\alpha-1-\gamma=\alpha^{p}-\alpha-\gamma=f(\alpha)=0
$$

Hence L is the splitting field of f and L / k is normal. Moreover $f^{\prime}=-1 \neq 0$, hence L / k is separable and thus Galois with

$$
|\operatorname{Gal}(L / k)|=[L: k]=\operatorname{deg}(f)=p
$$

Further $\operatorname{Gal}(L / k) \ni \sigma: \alpha \mapsto \alpha+1$ has order p, hence $\operatorname{Gal}(L / k)$ is cyclic and thus

$$
\operatorname{Gal}(L / k) \cong \mathbb{Z} / p \mathbb{Z}
$$

which is the claim.

Remark 4.6 Let L / k be an elementary radical extension of type (ii), i.e. $L=k[\alpha]$, where α is the root of $f=X^{n}-\gamma$ for some $\gamma \in k, n \geqslant 1$, $\operatorname{char}(k) \nmid n . X^{n}-\gamma$ is irreducible
Let \mathbb{F} be a splitting field of $X^{n}-1$ over k and $L \mathbb{F}=k(\alpha, \zeta)$ be the compositum of L and \mathbb{F}, i.e. the smallest subfield of \bar{k} containing L and \mathbb{F}.

\tilde{L} is a splitting field of $X^{n}-\gamma$ over \mathbb{F}, hence \tilde{L} / \mathbb{F} is Galois and by $4.4(i i), \operatorname{Gal}(\tilde{L} / \mathbb{F})$ is cyclic. Moreover \mathbb{F} / k is Galois and $\operatorname{Gal}(\mathbb{F} / k)$ is abelian. Hence \tilde{L} / k is Galois and

$$
\operatorname{Gal}(\tilde{L} / k) / \operatorname{Gal}(\tilde{L} / \mathbb{F}) \cong \operatorname{Gal}(\mathbb{F} / k)
$$

i.e. we have a short exact sequence

$$
1 \longrightarrow \underbrace{\operatorname{Gal}(\tilde{L} / \mathbb{F})}_{\text {cyclic }} \xrightarrow{\text { inj. }} \operatorname{Gal}(\tilde{L} / k) \xrightarrow{\text { surj. }} \underbrace{\operatorname{Gal}(\mathbb{F} / k)}_{\text {abelian }} \longrightarrow 1
$$

Example 4.7 Let $k=\mathbb{Q}, f=X^{3}-2$. Then $L=\mathbb{Q}[\alpha]$ with $\alpha=\sqrt[3]{2}$ and $\mathbb{F}=\mathbb{Q}[\zeta]$ with $\zeta=e^{\frac{2 \pi}{3}}$. Then $\tilde{L}=L(f)$ with $[\tilde{L}: \mathbb{Q}]=6$. We obtain

$$
\operatorname{Gal}(\tilde{L} / \mathbb{F}) \cong \mathbb{Z} / 3 \mathbb{Z}, \operatorname{Gal}(\mathbb{F} / k) \cong \mathbb{Z} / 2 \mathbb{Z}, \operatorname{Gal}(\tilde{L} / \mathbb{Q}) \cong S_{3}
$$

Definition 4.8 A group G is called solvable, if there exists a chain of subgroups

$$
1=G_{0} \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{n}=G
$$

where $G_{i-1} \triangleleft G_{i}$ is a normal subgroup and G_{i} / G_{i-1} is abelian for all $1 \leqslant i \leqslant n$.

Example 4.9 (i) Every abelian group is solvable.
(ii) S_{4} is solvable by

$$
1 \triangleleft V_{4} \triangleleft A_{4} \triangleleft S_{4}
$$

where $V_{4}=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$. For the quotients we have

$$
V_{4} /\{1\} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \quad A_{4} / V_{4} \cong \mathbb{Z} / 3 \mathbb{Z}, \quad S_{4} / A_{4} \cong \mathbb{Z} / 2 \mathbb{Z}
$$

(iii) S_{5} is not solvable, since A_{5} is simple (EAZ 6.6) but the quotient $A_{5} /\{1\}$ is not abelian.
(iv) If G, H are solvable groups, then the direct product $G \times H$ is solvable.

Proposition 4.10 (i) Let G be a solvable group. Then
(1) Every subgroup $H \leqslant G$ is solvable.
(2) Every homomorphic image of G is solvable.
(ii) Let

$$
1 \longrightarrow G^{\prime} \longrightarrow G \longrightarrow G^{\prime \prime} \longrightarrow 1
$$

be a short exact sequence. Then G is solvable if and only if G^{\prime} and $G^{\prime \prime}$ are solvable.
proof. (i) (1) Let G be solvable, i.e. we have a chain $1=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G$. Let $G^{\prime} \leqslant G$ a subgroup. Then

$$
1 \triangleleft G_{1} \cap G^{\prime} \triangleleft \ldots \triangleleft G_{n} \cap G^{\prime}=G^{\prime}
$$

is a chain of subgroups of G^{\prime} and we have $G_{i} \cap G^{\prime} \triangleleft G_{i+1} \cap G^{\prime}$ and moreover

$$
\left(G_{i+1} \cap G^{\prime}\right) /\left(G_{i} \cap G^{\prime}\right) \cong G_{i}\left(G_{i+1} \cap G^{\prime}\right) / G_{i} \leqslant G_{i+1} / G_{i} .
$$

Hence we have abelian quotients and G^{\prime} is solvable.
(2) Let H be a group and $\phi: G \longrightarrow H$ be a surjective homomorphism of groups. Let

$$
1 \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{n}=G .
$$

Let $H_{i}:=\phi\left(G_{i}\right)$. Then H_{i} is normal in H_{i+1}. It remains to show that the quotients are abelian. Consider

(We have $G_{i} \subseteq \operatorname{ker}(\tilde{\phi})$, since $\phi\left(G_{i}\right)=H_{i}=\operatorname{ker}\left(\pi_{H}\right)$. Hence $\tilde{\phi}$ factors to

$$
\bar{\phi}: \underbrace{G_{i+1} / G_{i}}_{\text {abelian }} \underbrace{\longrightarrow}_{\Rightarrow} \underbrace{H_{i+1} / H_{i}}_{\text {abelian! }}
$$

and we get $\bar{\phi}(a) \bar{\phi}(b)=\bar{\phi}(a b)=\bar{\phi}(b a)=\bar{\phi}(b) \bar{\phi}(a)$, hence the quotient is abelian and
$H=\phi(G)$ is solvable.
(ii) ${ }^{\prime} \Rightarrow$ ' Clear.
${ }^{\prime} \Leftarrow$ ' Let

$$
1 \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{m}=G^{\prime}, \quad 1 \triangleleft H_{m+1} \triangleleft \cdots \triangleleft H_{m+k}=G^{\prime \prime}
$$

chains of subgroups with abelian quotients. Define

$$
G_{i}:=\pi^{-1}\left(H_{i}\right)_{m+1 \leqslant i \leqslant m+k}, \pi: G \longrightarrow G^{\prime \prime} .
$$

Then G_{i} is normal in G_{i+1} and we have

$$
G_{m+0}=\pi^{-1}(\{1\})=G^{\prime}=G_{m} .
$$

For $m+1 \leqslant i \leqslant m+k$ we have

$$
G_{i+1} / G_{i}=\pi^{-1}\left(H_{i+1} / H_{i}\right) \cong H_{i+1} / H_{i}
$$

and hence the chain

$$
1 \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{m}=G^{\prime} \triangleleft G_{m+1} \triangleleft \cdots \triangleleft G_{m+k}=G
$$

reveals the solvability of G.

Lemma 4.11 A finite separable field extension L / k is a radical extension if and only if there exists a finite Galois extension $L^{\prime} / k, L \subseteq L^{\prime}$ such that $\operatorname{Gal}\left(L^{\prime} / k\right)$ is solvable.
proof. ${ }^{\prime} \Rightarrow$ ' Let

$$
k=k_{0}=L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{n}
$$

a chain as in definition 4.7 with $L \subseteq L_{n}$. we prove the statement by induction.
$\mathbf{n}=\mathbf{1}$ This is exactly remark 4.5, 4.6
$\mathbf{n}>\mathbf{1}$ By induction hypothesis L_{n-1} / k is solvable. Moreover L_{n} / L_{n-1} is solvable, too. This is equivalent to the fact, that L_{n-1} is contained in a Galois extension \tilde{L}_{n-1} / k such that $\operatorname{Gal}(\tilde{L} / k)$ is solvable and L_{n} is contained in a Galois extension \tilde{L} / L_{n-1} such that $\operatorname{Gal}\left(\tilde{L} / L_{n-1}\right)$ is solvable. We have a diagramm

$$
\begin{array}{rlll}
\tilde{L}_{n-1} \subseteq \tilde{L} L_{n-1} & := & \mathbb{M} \\
& \mathrm{Ul} \\
k \subseteq & & \\
& L_{n-1} & \subseteq L_{n} \quad \subseteq & \tilde{L}
\end{array}
$$

We obtain, that \mathbb{M} is Galois over L_{n-1}, since $\tilde{L}, \tilde{L}_{n-1}$ are Galois over L_{n-1}, hence by

$$
\iota: \operatorname{Gal}\left(\mathbb{M} / \tilde{L}_{n-1}\right) \longrightarrow \operatorname{Gal}\left(\tilde{L} / L_{n-1}\right),\left.\sigma \mapsto \sigma\right|_{\tilde{L}}
$$

an injective homomorphism of groups is given, hence

$$
\operatorname{Gal}\left(\mathbb{M} / \tilde{L}_{n-1}\right) \leqslant \operatorname{Gal}\left(\tilde{L} / L_{n-1}\right)
$$

is solvable as a subgroup of a solvable group.
Let now $\tilde{\mathbb{M}} / \mathbb{M}$ be a minimal extension, such that $\tilde{\mathbb{M}} / k$ is Galois. Explicitly, $\tilde{\mathbb{M}}$ is defined as the normal hull of \mathbb{M}, i.e. the splitting field of the minimal polynomial of a primitive element of \mathbb{M} / k.
Now we want to show that $\operatorname{Gal}(\mathbb{M} / k$ is solvable. This finishes the proof of the sufficiency of our Lemma. Consider the short exact sequence

$$
1 \longrightarrow \operatorname{Gal}\left(\tilde{\mathbb{M}} / \tilde{L}_{n-1}\right) \longrightarrow \operatorname{Gal}(\mathbb{M} / k) \longrightarrow \operatorname{Gal}\left(\tilde{L}_{n-1} / k\right) \longrightarrow 1
$$

By proposition 4.8 and our induction hypothesis it suffices to show that $\operatorname{Gal}\left(\tilde{M} / \tilde{L}_{n-1}\right)$ is solvable. Therefore observe that $\tilde{\mathbb{M}}$ is generated over k by the $\sigma(k)$ for $\sigma \in \operatorname{Hom}_{\mathrm{k}}(\mathbb{M}, \overline{\mathrm{k}})$, where \bar{k} denotes an algebraic closure of k. For any $\sigma \in \operatorname{Hom}_{\mathrm{k}}(\mathbb{M}, \overline{\mathrm{k}}), \sigma(\mathbb{M}) / \sigma\left(L_{n-1}\right)=$ $\sigma(\mathbb{M}) / \tilde{L}_{n-1}$ is Galois. Hence

$$
\Phi: \operatorname{Gal}\left(\tilde{\mathbb{M}} / \tilde{L}_{n-1}\right) \longrightarrow \prod_{\sigma \in \operatorname{Hom}_{\mathrm{k}}(\mathbb{M}, \overline{\mathrm{k}})} \operatorname{Gal}\left(\sigma(\mathbb{M}) / \tilde{L}_{n-1}\right), \tau \mapsto\left(\left.\tau\right|_{\sigma(\mathbb{M})}\right)_{\sigma}
$$

is injective. Hence $\operatorname{Gal}\left(\tilde{\mathbb{M}} / \tilde{L}_{n-1}\right)$ is solvable as a subgroup of a product of solvable groups.
$' \Leftarrow '$ Let now \tilde{L} / L finite such that $\operatorname{Gal}(\tilde{L} / k)$ is solvable. Let

$$
1 \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{n}=G
$$

be a chain of subgroups as in definition 4.7. By the main theorem we have bijectively correspond intermediate fields

$$
\tilde{L}=L_{n} \supseteq L_{n-1} \supseteq \cdots \supseteq L_{0}=k
$$

where L_{i+1} / L_{i} is Galois and $\operatorname{Gal}\left(L_{i+1} / L\right) \cong \mathbb{Z} / p \mathbb{Z}$ for all $1 \leqslant i \leqslant n-1$. We now have to differ between three cases.
case $1 p_{i}=\operatorname{char}(k)$. Then L_{i+1} / L_{i} is an elementary radical extension of type (iii), i.e. L / k is a radical extension.
case $2 p_{i} \neq \operatorname{char}(k)$ and L_{i} contains a primitive p_{i}-th root of unity. Then L_{i+1} / L_{i} is an elementary radical extension of type (ii), i.e. L / k is a radical extension.
case $3 p_{i} \neq \operatorname{char}(k)$ and L_{i} does not contain any primitive p_{i}-th root of unity. Then define

$$
d:=\prod_{p \in \mathbb{P}, p \| G \mid} p
$$

And let \mathbb{F} be the splitting field of $X^{d}-1$ over k. Then \mathbb{F} / k is an elementary radical extension of type (i). Let $L^{\prime}:=\tilde{L} \mathbb{F}$ be the composite of \tilde{L} and \mathbb{F} in \bar{k}. Then L^{\prime} / \mathbb{F} is Galois by remark 4.5. Let $G^{\prime}=\operatorname{Gal}\left(L^{\prime} / \mathbb{F}\right)$. Consider the map

$$
\Psi: \operatorname{Gal}\left(L^{\prime} / \mathbb{F}\right) \longrightarrow \operatorname{Gal}(\tilde{L} / k),\left.\sigma \mapsto \sigma\right|_{\tilde{L}} .
$$

Ψ is a well defined injective homomorphism of groups, hence $\operatorname{Gal}\left(L^{\prime} / \mathbb{F}\right) \leqslant \operatorname{Gal}(\tilde{L} / k)$ is solvable as a subgroup of a solvable group. Let

$$
1 \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{n}=G^{\prime}
$$

a chain of subgroups as in definition 4.7. Let further be

$$
k \subseteq \mathbb{F}=L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{n}=L^{\prime}
$$

be the corresponding chain of intermediate fields, i.e L_{i} / L_{i-1} is Galois and $\operatorname{Gal}\left(L_{i} / L_{i-1}\right) \cong$ $\mathbb{Z} / p \mathbb{Z}$ for $1 \leqslant i \leqslant n$. Hence, L_{i} / L_{i-1} is a radical extension of type (ii). Thus L / k is a radical extension, which finishes the proof.

Theorem 4.12 Let $f \in k[X]$ be a separable non-constant polynomial. Then f is solvable by radicals if and only if $\operatorname{Gal}(f)=\operatorname{Gal}(L(f) / k)$ is solvable.
proof. Let f be solvable by radicals, i.e. $L(f) / k$ be a radical field extension.
$\Longleftrightarrow L(f)$ is contained in some Galois extension \tilde{L} / k and $\operatorname{Gal}(\tilde{L} / k)$ is solvable.
\Longleftrightarrow In $k \subseteq L(f) \subseteq \tilde{L}$ all extensions are Galois.
$\stackrel{3.5}{\Longleftrightarrow} \operatorname{Gal}(L(f) / k) \cong \operatorname{Gal}(\tilde{L} / k) / \operatorname{Gal}(\tilde{L} / L(f))$
$\stackrel{4.8}{\Longleftrightarrow} \operatorname{Gal}(L(f) / k)$ is solvable.

Theorem 4.13 Let G be a group, k a field. Then the subset $\operatorname{Hom}\left(\mathrm{G}, \mathrm{k}^{\times}\right) \subseteq \operatorname{Maps}(\mathrm{G}, \mathrm{k})$ is linearly independant in the k-vector space $\operatorname{Maps}(\mathrm{G}, \mathrm{k})$.
proof. Suppose $\operatorname{Hom}\left(\mathrm{G}, \mathrm{k}^{\times}\right)$is linearily dependant. Then let $n>0$ minimal, such that there exist distinct elements $\chi_{1}, \ldots \chi_{n} \in \operatorname{Hom}\left(\mathrm{G}, \mathrm{k}^{\times}\right)$and $\lambda_{1}, \ldots \lambda_{n} \in k^{\times}$such that

$$
\sum_{i=0}^{n} \lambda_{i} \chi_{i}=0 .
$$

The χ_{i} are called characters. Clearly we have $n \geqslant 2$. Choose $g \in G$ such that $\chi_{1}(g) \neq \chi_{2}(g)$. For any $h \in G$ we have

$$
0=\sum_{i=0}^{n} \lambda_{i} \chi_{i}(g h)=\sum_{i=0}^{n} \underbrace{\lambda_{i} \chi_{i}(g)}_{=: \mu_{i}} \chi_{i}(h)=\sum_{i=0}^{n} \mu_{i} \chi_{i}(h) .
$$

Then we get

$$
0=\sum_{i=0}^{n} \mu_{i} \chi_{i}(h)=\sum_{i=0}^{n} \lambda_{i} \chi_{i}(g) \chi_{i}(h) \Rightarrow \sum_{i=0}^{n} \underbrace{\left(\mu_{i}-\lambda_{i} \chi_{1}(g)\right)}_{=: \nu_{i}} \chi_{i}(h)=0 .
$$

Consider

$$
\begin{gathered}
\nu_{1}=\mu_{1}-\lambda_{1} \chi_{1}(g)=\lambda_{1} \chi_{1}(g)-\lambda_{1} \chi_{1}(g)=0, \\
\nu_{2}=\mu_{2}-\lambda_{2} \chi_{1}(g)=\lambda_{2} \chi_{2}(g)-\lambda_{2} \chi_{1}(g)=\underbrace{\lambda_{2}}_{\neq 0} \cdot \underbrace{\left(\chi_{2}(g)-\chi_{1}(g)\right)}_{\neq 0} \neq 0 .
\end{gathered}
$$

Hence $\chi_{2}, \ldots \chi_{n}$ are linearily dependent. This is a contradiction to the minimality of n.
Proposition 4.14 Let L / k be a Galois extension such that $G:=\operatorname{Gal}(L / k)=(\sigma)$ is cyclic of order d for some $\sigma \in G$, where char $(k) \nmid d$. Let $\zeta_{d} \in k$ be a primitive d-th root of unity. Then there exsits $\alpha \in L^{\times}$such that $\sigma(\alpha)=\zeta \cdot \alpha$.
proof. Let

$$
f: L \longrightarrow L, \quad f(X)=\sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i}(X)
$$

Applying Theorem 4.10 on $G=L^{\times}$and $k=L$ shows $f \neq 0$. Then let $\gamma \in L$ such that $\alpha:=f(\gamma) \neq 0$. Then we have

$$
\begin{aligned}
\sigma(\alpha)=\sigma(f(\gamma)) & =\sigma\left(\sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i}(\gamma)\right)=\sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i+1}(\gamma)=\zeta \cdot \sum_{i=0}^{d-1} \zeta^{-(i+1)} \cdot \sigma^{i+1}(\gamma) \\
& =\zeta \cdot \sum_{i=1}^{d} \zeta^{-i} \cdot \sigma^{i}(\gamma)=\zeta\left(\left(\sum_{i=1}^{d-1} \zeta^{-i} \cdot \sigma^{i}(\gamma)\right)+\gamma\right) \\
& =\zeta \cdot f(\gamma)=\zeta \cdot \alpha
\end{aligned}
$$

Remark: The claim follows from Proposition 5.2 by insertig $\beta=\zeta$.
Corollary 4.15 Let L / k be a Galois extension, such that $G:=\operatorname{Gal}(L / k)=(\sigma)$ is cyclic of order d for some $\sigma \in G$, where $\operatorname{char}(k) \nmid d$. Assume k contains a primitive d-th root of unity. Then L / k is an elementary radical extension of type (ii).
proof. Let $\zeta_{d} \in k$ be a primitive d-th root of unity and $\alpha \in L^{\times}$such that $\sigma(\alpha)=\zeta \cdot \alpha$.
We have

$$
\sigma^{i}(\alpha)=\zeta^{i} \cdot \alpha \quad \text { for } 1 \leqslant i \leqslant d
$$

The minimal polynomial of α over k has at least d zeroes, namely $\alpha, \sigma(\alpha), \ldots \sigma^{d-1}(\alpha)$. Thus $L=k[\alpha]$. Moreover we have

$$
\sigma\left(\alpha^{d}\right)=(\sigma(\alpha))^{d}=(\zeta \cdot \alpha)^{d}=\alpha^{d}
$$

hence

$$
\alpha^{d} \in L^{(\sigma)}=L^{\mathrm{Gal}(L / k)}=k
$$

where the last equation follows by the main theorem. Define $\gamma:=\alpha^{d}$. Then the minimal polynomial of α over k is $X^{d}-\gamma \in k[X]$, which proves the claim.

Proposition 4.16 Let L / k be a Galois extension of degree $p=\operatorname{char}(k)$ with cyclic Galois group $\operatorname{Gal}(L / k) \cong \mathbb{Z} / p \mathbb{Z}=(\sigma)$. Then there exists $\alpha \in L^{\times}$such that $\sigma(\alpha)=\alpha+1$.
proof. The proof follows by Proposition 5.4 by setting $\beta=-1$.

Corollary 4.17 Let L / k be a Galois extension of degree $p=\operatorname{char}(k)$ with cyclic Galois group $\operatorname{Gal}(L / k) \cong \mathbb{Z} / p \mathbb{Z}=(\sigma)$. Then L / k is an elementary radical extension of type (iii).
proof. Let $\alpha \in L^{\times}$such that $\sigma(\alpha)=\alpha+1$. We have

$$
\sigma^{i}(\alpha)=\alpha+i \quad \text { for } 1 \leqslant i \leqslant p
$$

thus we have $L=k[\alpha]$. Moreover we have

$$
\sigma\left(\alpha^{p}-\alpha\right)=\sigma^{p}(\alpha)-\sigma(\alpha)=(\alpha+1)^{p}-(\alpha+1)=\alpha^{p}+1-\alpha-1=\alpha^{p}-\alpha
$$

Thus again we have $\alpha^{p} \in k$. Define $\gamma:=\alpha^{p}-\alpha$. Then the minimal polynomial of α over k is $X^{p}-X-\gamma$, which proves the claim.

§ 5 Norm and trace

Definition + remark 5.1 Let L / k be a finite separable field extension, $[L: k]=n$. Let $\operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})=\left\{\sigma_{1}, \ldots \sigma_{\mathrm{n}}\right\}$.
(i) For $\alpha \in L$ we define the norm of α over k by

$$
N_{L / k}(\alpha):=\prod_{i=1}^{n} \sigma_{i}(\alpha)
$$

(ii) $N_{L / k} \in k$ for all $\alpha \in L$.
(iii) $N_{L / k}: L^{\times} \longrightarrow k^{\times}$is a homomorphism of groups.
proof. (ii) Let $\alpha \in L$. Assume first that L / k is Galois. Then $\operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})=\operatorname{Aut}_{\mathrm{k}}(\mathrm{L})=\operatorname{Gal}(L / k)$. For $\tau \in \operatorname{Gal}(L / k)$ we have

$$
\tau\left(N_{L / k}\right)=\tau\left(\prod_{i=1}^{n} \sigma_{i}(\alpha)\right)=\prod_{i=1}^{n} \underbrace{\left(\tau \sigma_{i}\right)}_{\in \operatorname{Gal}(L / k)}(\alpha)=N_{L / k},
$$

hence $N_{L / k} \in L^{\operatorname{Gal}(L / k)}=k$. Now consider the general case. Let $\tilde{L} \supseteq L$ be the normal hull of L over k. Recall that \tilde{L} is the composition of the $\sigma_{i}(L)$, i.e. we have

$$
\tilde{L}=\prod_{i=1}^{n} \sigma_{i}(L)
$$

Then \tilde{L} / k is Galois an for $\tau \in \operatorname{Gal}(\tilde{L} / k)$ we have

$$
\tau\left(N_{L / k}(\alpha)\right)=\prod_{i=1}^{n} \underbrace{\left(\tau \sigma_{i}\right)}_{\in \operatorname{Hom}_{\mathrm{k}}(\mathrm{~L}, \overline{\mathrm{k}})}(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha)=N_{L / k}(\alpha),
$$

hence $N_{L / k}(\alpha) \in \tilde{L}^{\operatorname{Gal}(\tilde{L} / k)}=k$.
(iii) We have $N_{L / k}(\alpha)=0 \Longleftrightarrow \sigma_{i}(\alpha)=0$ for some $1 \leqslant i \leqslant n \Leftrightarrow \alpha=0$.

Moreover

$$
\begin{aligned}
N_{L / k}(\alpha \cdot \beta) & =\prod_{i=1}^{n} \sigma_{i}(\alpha \beta)=\prod_{i=1}^{n} \sigma_{1}(\alpha) \sigma_{i}(\beta)=\left(\prod_{i=1}^{n} \sigma_{i}(\alpha)\right) \cdot\left(\prod_{i=1}^{n} \sigma_{i}(\beta)\right) \\
& =N_{L / k}(\alpha) \cdot N_{L / k}(\beta)
\end{aligned}
$$

which proves the claim.

Example 5.2 (i) Let $\alpha \in k$. Then

$$
N_{L / k}(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha)=\prod_{i=1}^{n} \alpha=\alpha^{n}
$$

(ii) Let $k=\mathbb{R}, L=\mathbb{C}$. Then $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, \overline{\mathbb{R}})=\operatorname{Gal}(\mathbb{C} / \mathbb{R})=\{\mathrm{id}, \mathrm{z} \mapsto \overline{\mathrm{z}}\}$ and thus the norm ist $N_{L / k}(z)=z \bar{z}=|z|^{2}$.
(iii) Let $k=\mathbb{Q}, L=\mathbb{Q}[\sqrt{d}]$ for $d \in \mathbb{Z}$ squarefree. We have $[\mathbb{Q}[\sqrt{d}]: \mathbb{Q}]=2$ and

$$
\operatorname{Gal}(\mathbb{Q}[\sqrt{d}] / \mathbb{Q})=\{\mathrm{id}, \sqrt{\mathrm{~d}} \mapsto-\sqrt{\mathrm{d}}\}=\{\mathrm{a}+\mathrm{b} \sqrt{\mathrm{~d}} \mapsto \mathrm{a}+\mathrm{b} \sqrt{\mathrm{~d}}, \mathrm{a}+\mathrm{b} \sqrt{\mathrm{~d}} \mapsto \mathrm{a}-\mathrm{b} \sqrt{\mathrm{~d}}\} .
$$

Then we have

$$
N_{\mathbb{Q}[\sqrt{d}] / \mathbb{Q}}(a+b \sqrt{d})=(a+b \sqrt{d})(a-b \sqrt{d})=a^{2}-d b^{2}
$$

- $d<0: d=-\tilde{d}$, hence $a^{2}+\tilde{d} b^{2} \stackrel{!}{=} 1 \Rightarrow$ either $a= \pm 1, b=0$ or $a=0, b= \pm 1, \tilde{d}=1$.
- $d>0$: Infinitely many solutions for $a^{2}-b d^{2}=1$.

Proposition 5.3 (Hilbert's theorem 90-multiplicative version) LetL/k a finite Galois extension with cyclic Galois group $\operatorname{Gal}(L / k)=(\sigma), n=[L: k]$. Let $\beta \in L$ with $N_{L / k}(\beta)=1$.
Then there exists $\alpha \in L^{\times}$such that $\beta=\frac{\alpha}{\sigma(\alpha)}$.
proof. Define

$$
f=\mathrm{id}_{\mathrm{L}}+\beta \sigma+\beta \sigma(\beta) \sigma^{2}+\ldots+\beta \sigma(\beta) \sigma^{2}(\beta) \cdots \sigma^{\mathrm{n}-2}(\beta) \sigma^{\mathrm{n}-1}=\sum_{\mathrm{j}=0}^{\mathrm{n}-1} \sigma^{\mathrm{j}} \prod_{\mathrm{i}=1}^{\mathrm{j}} \sigma^{\mathrm{i}-1}(\beta) .
$$

Then by Theorem $4.10 f \neq 0$. Choose $\gamma \in L$ such that $\alpha:=f(\gamma) \neq 0$. Then we have

$$
\begin{aligned}
\beta \cdot \sigma(\alpha)=\beta \cdot \sigma(f(\gamma)) & =\beta \cdot\left(\sigma\left(\gamma+\beta \sigma(\gamma)+\ldots+\prod_{i=0}^{n-2} \sigma^{i}(\beta) \sigma^{n-1}(\gamma)\right)\right) \\
& =\beta \cdot\left(\sigma(\gamma)+\sigma(\beta) \sigma^{2}(\gamma)+\ldots+\prod_{i=0}^{n-2} \sigma^{i+1}(\beta) \sigma^{n}(\gamma)\right) \\
& =\beta \cdot\left(\sigma(\gamma)+\sigma(\beta) \sigma^{2}(\gamma)+\ldots+\frac{1}{\beta} N_{L / k}(\beta) \cdot \gamma\right) \\
& =\beta \cdot\left(\sigma(\gamma)+\sigma(\beta) \sigma^{2}(\gamma)+\ldots+\gamma\right) \\
& =\gamma+\beta \sigma(\gamma)+\beta \sigma(\beta) \sigma^{2}(\gamma)+\ldots+\beta \cdot \prod_{i=1}^{n-2} \sigma^{i}(\beta) \sigma^{n-1}(\gamma) \\
& =f(\gamma)=\alpha
\end{aligned}
$$

which is the claim.
Definition + remark 5.4 Let L / k be a finite separable field extension, $[L: k]=n$. Let $\operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})=\left\{\sigma_{1}, \ldots \sigma_{\mathrm{n}}\right\}$.
(i) For $\alpha \in L$,

$$
\operatorname{tr}_{L / k}(\alpha):=\sum_{i=0}^{n} \sigma_{i}(\alpha)
$$

is called the trace of α over k.
(ii) $\operatorname{tr}_{L / k}(\alpha) \in k$ for all $\alpha \in L$.
(iii) $\operatorname{tr}_{L / k}: L \longrightarrow k$ is k-linear.
proof. (ii) As in proof 5.1, $\operatorname{tr}_{L / k}(\alpha)$ is invariant under $\operatorname{Gal}(\tilde{L} / k)$.
(iii) Clear.

Example 5.5 (i) Let $\alpha \in k$. Then

$$
\operatorname{tr}_{L / k}(\alpha)=\sum_{i=0}^{n} \sigma_{i}(\alpha)=\sum_{i=0}^{n} \alpha=n \cdot \alpha
$$

(ii) Let $k=\mathbb{R}, L=\mathbb{C}$. Then $\operatorname{tr}_{\mathbb{C} / \mathbb{R}}(z)=z+\bar{z}=2 \cdot \mathfrak{R e}(z)$.

Proposition 5.6 (Hilbert's theorem 90-additive version) Let L / k be a Galois extension with cyclic Galois group $\operatorname{Gal}(L / k)=(\sigma)$ and $[L: k]=\operatorname{char}(k)=p \in \mathbb{P}$. Then for every $\beta \in L$ with $\operatorname{tr}_{L / k}(\beta)=0$ there exists $\alpha \in L$ such that $\beta=\alpha-\sigma(\alpha)$.
proof. Define

$$
g=\beta \cdot \sigma+(\beta+\sigma(\beta)) \cdot \sigma^{2}+\ldots+\left(\sum_{i=0}^{p-2} \sigma^{i}(\beta)\right) \cdot \sigma^{p-1}=\sum_{i=0}^{p-2}\left(\sum_{j=0}^{i} \sigma^{j}(\beta)\right) \cdot \sigma^{i+1} .
$$

Let now $\gamma \in L$ such that $\operatorname{tr}_{L / k}(\gamma) \neq 0$ (existing by 4.11). Then for

$$
\alpha:=\frac{1}{t r_{L / k}(\gamma)} \cdot g(\gamma)
$$

we have

$$
\begin{aligned}
\alpha-\sigma(\alpha) & =\frac{1}{\operatorname{tr}_{L / k}(\gamma)} \cdot(g(\gamma)-\sigma(g(\gamma))) \\
& =\frac{1}{t r_{L / k}(\gamma)}\left(\left(\sum_{i=0}^{p-2}\left(\sum_{j=0}^{i} \sigma^{j}(\beta)\right) \sigma^{i+1}(\gamma)\right)-\left(\sum_{i=0}^{p-2}\left(\sum_{j=0}^{i} \sigma^{j+1}(\beta)\right) \sigma^{i+2}(\gamma)\right)\right) \\
& =\frac{1}{t r_{L / k}(\gamma)}\left(\left(\sum_{i=0}^{p-2}\left(\sum_{j=0}^{i} \sigma^{j}(\beta)\right) \sigma^{i+1}(\gamma)\right)-\left(\sum_{i=1}^{p-1}\left(\sum_{j=1}^{i} \sigma^{j}(\beta)\right) \sigma^{i+1}(\gamma)\right)\right) \\
& =\frac{1}{\operatorname{tr}_{L / k}(\gamma)} \cdot\left(\sum_{i=0}^{p-1} \beta \cdot \sigma^{i}(\gamma)\right)=\beta,
\end{aligned}
$$

and we obtain the claim.

Proposition 5.7 Let L / k be a finite separable extension, $\alpha \in L$. Consider the k-linear map

$$
\phi_{\alpha}: L \longrightarrow L, \quad x \mapsto \alpha \cdot x .
$$

Then
(i) $N_{L / k}(\alpha)=\operatorname{det}\left(\phi_{\alpha}\right)$.
(ii) $\operatorname{tr}_{L / k}(\alpha)=\operatorname{tr}\left(\phi_{\alpha}\right)$.
proof. Let

$$
f=\sum_{i=0}^{d} a_{i} X^{i}
$$

be the minimal polynomial of α over k. Then it holds

$$
\left(f \circ \phi_{\alpha}\right)(x)=f\left(\phi_{\alpha}(x)\right)=\sum_{i=0}^{d} a_{i} \phi_{\alpha}^{i}(x)=\sum_{i=0}^{d} a_{i} \alpha^{i} \cdot x=x \cdot \sum_{i=0}^{d} a_{i} \alpha^{i}=x \cdot f(\alpha)=0
$$

For arbitrary $x \in L$, hence $f\left(\phi_{\alpha}\right)=0$.
case 1.1 Assume first $L=k[\alpha]$ for some $\alpha \in k$. Then $[L: k]=\operatorname{deg}(f)=d$, so $\left\{1, \alpha, \ldots, \alpha^{d-1}\right\}$ is a k-basis of L. Then we have a transformation matrix of ϕ_{α} with respect to the basis $\left\{1, \alpha, \ldots, \alpha^{d-1}\right\}$

$$
D=\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & a_{0} \\
1 & 0 & & \vdots & -a_{1} \\
0 & 1 & & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & \vdots \\
0 & \ldots & 0 & 1 & -a_{d-1}
\end{array}\right)
$$

thus we have $\operatorname{tr}\left(\phi_{\alpha}\right)=-a_{d-1}$ and $\operatorname{det}\left(\phi_{\alpha}\right)=(-1)^{d} \cdot a_{0}$. We know that f splits over \bar{k}, say

$$
f=\prod_{i=1}^{d}\left(X-\lambda_{i}\right)=\prod_{i=1}^{d}\left(X-\sigma_{i}(\alpha)\right)
$$

Then we easily see

$$
\begin{aligned}
\operatorname{det}\left(\phi_{\alpha}\right)=(-1)^{d} \cdot a_{0}=(-1)^{d} \cdot f(0) & =(-1)^{d} \cdot \prod_{i=1}^{d}\left(0-\sigma_{i}(\alpha)\right)=\prod_{i=1}^{d} \sigma_{i}(\alpha)=N_{L / k}(\alpha), \\
\operatorname{tr}\left(\phi_{\alpha}\right) & =-a_{d-1}=\operatorname{tr}_{L / k}(\alpha)
\end{aligned}
$$

case 1.2 For the case $\alpha \in k, \phi_{\alpha}$ is represented by the diagonal matrix $\left(\begin{array}{lll}\alpha & & 0 \\ & \ddots & \\ 0 & & \alpha\end{array}\right) \in k^{d \times d}$.
We obtain

$$
\operatorname{tr}\left(\phi_{\alpha}\right)=d \cdot \alpha=\operatorname{tr}_{L / k}(\alpha) \quad \operatorname{det}\left(\phi_{\alpha}\right)=\alpha^{d}=\operatorname{tr}_{L / k}(\alpha) .
$$

case 2 For the general case we have $k \subseteq k(\alpha) \subseteq L$.

Claim (a) The following is true:

$$
N_{L / k}(\alpha)=N_{k(\alpha]) k}\left(N_{L / k(\alpha)}(\alpha)\right), \quad \operatorname{tr}_{L / k}(\alpha)=\operatorname{tr}_{k(\alpha) / k}\left(\operatorname{tr}_{L / k(\alpha)}(\alpha)\right)
$$

Claim (b) The following identity holds:

$$
\operatorname{det}\left(\phi_{\alpha}\right)=\left(\operatorname{det}\left(\left.\phi_{\alpha}\right|_{k(\alpha)}\right)\right)^{[L: k(\alpha)]} \quad \operatorname{tr}\left(\phi_{\alpha}\right)=[L: k(\alpha)] \cdot \operatorname{tr}\left(\left.\phi_{\alpha}\right|_{k(\alpha)}\right) .
$$

Assuming Claim (a) and (b), we get

$$
\begin{aligned}
\operatorname{det}\left(\phi_{\alpha}\right) & =\left(\operatorname{det}\left(\left.\phi_{\alpha}\right|_{k(\alpha)}\right)\right)^{[L: k(\alpha)]} \stackrel{1.1}{=}\left(N_{k(\alpha) / k}\right)^{[L: k(\alpha)]}=N_{k(\alpha) / k}\left(\alpha^{[L: k(\alpha)]}\right) \\
& \stackrel{1.2}{=} N_{k(\alpha) / k}\left(N_{L / k(\alpha)}(\alpha)\right) \\
& \stackrel{(a)}{=} N_{L / k}(\alpha)
\end{aligned}
$$

And analogously $\operatorname{tr}\left(\phi_{\alpha}\right)=t r_{L / k}(\alpha)$.

Let's now proof the claims.
(b) Let $x_{1}, \ldots x_{d}$ be a basis of $k(\alpha) /$ as a k-vector space and $y_{1}, \ldots y_{m}$ a basis of L as a $k(\alpha)$ vector space. Then the $x_{i} y_{j}$ for $1 \leqslant i \leqslant d, 1 \leqslant j \leqslant m$ form a k-basis for L. Let now $D \in k^{d \times d}$ be the matrix representing $\left.\phi_{\alpha}\right|_{k(\alpha)}$. Then we have

$$
\alpha x_{i} y_{j}=\underbrace{\left(\alpha x_{i}\right)}_{\in k(\alpha)} y_{j}=\left(D \cdot x_{i}\right) y_{j}
$$

hence ϕ_{α} is represented by

$$
\tilde{D}=\left(\begin{array}{cccc}
A & 0 & \ldots & 0 \\
0 & A & & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & A
\end{array}\right)
$$

(a) This is an exercise.

Definition + remark 5.8 Let L / k be a finite field extension, $r=[L: k]_{s}=\left|\operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})\right|$. Let $q=\frac{[L: k]}{[L: k]_{s}}$.
(i) For $\alpha \in L$ define

$$
N_{L / k}(\alpha)=\operatorname{det}\left(\phi_{\alpha}\right) \quad \operatorname{tr}_{L / k}(\alpha)=\operatorname{tr}\left(\phi_{\alpha}\right)
$$

(ii) Let $\operatorname{Hom}_{\mathrm{k}}(\mathrm{L}, \overline{\mathrm{k}})=\left\{\sigma_{1}, \ldots, \sigma_{\mathrm{r}}\right\}$. Then

$$
N_{L / k}(\alpha)=\left(\prod_{i=1}^{r} \sigma^{i}(\alpha)\right)^{q}, \quad \operatorname{tr}_{L / k}(\alpha)=\left(\sum_{i=1}^{r} \sigma_{i}(\alpha)\right) \cdot q
$$

proof. Copy the proof of 5.5 . Recall that the minimal polynomial of α over k is given by

$$
m_{\alpha}=\prod_{i=1}^{r}\left(X-\sigma_{i}(\alpha)\right)^{q}
$$

where q is defined as above.

§ 6 Normal series of groups

Definition 6.1 Let G be a group.
(i) A series

$$
G=G_{0} \triangleright G_{1} \triangleright \ldots \triangleright G_{n}
$$

of subgroups is called a normal series for G, if $G_{i} \triangleleft G_{i-1}$ is a normal subgroup in G_{i-1} and $G_{i} \neq G_{i-1}$ for $1 \leqslant i \leqslant n$. The groups $H_{i}:=G_{i-1} / G_{i}$ are called factors of the series.
(ii) A normal series as above is called a composition series for G, if all its factors are simple groups and $G_{n}=\{e\}$.

Example 6.2 (i) For $G=S_{4}$ we have a composition series

$$
G=S_{4} \triangleright A_{4} \triangleright V_{4} \triangleright T_{4} \triangleright\{e\}
$$

where $T_{4}=\{\mathrm{id}, \sigma\} \cong \mathbb{Z} / 2 \mathbb{Z}$ for some transposition $\sigma \in S_{4}$. We have quotients

$$
S_{4} / A_{4}=\mathbb{Z} / 2 \mathbb{Z}, \quad A_{4} / V_{4}=\mathbb{Z} / 3 \mathbb{Z}, \quad V_{4} / T_{4}=\mathbb{Z} / 2 \mathbb{Z}, \quad T_{4} /\{e\}=\mathbb{Z} / 2 \mathbb{Z}
$$

(ii) \mathbb{Z} has no composition series.
(iii) Every normal series is a composition series.
(iv) Every finite group has a composition series.

Remark 6.3 If $G=G_{0} \triangleright G_{1} \triangleright \ldots \triangleright G_{n}=\{e\}$ is a normal composition series for a finite group G, then the following is clear:

$$
|G|=\prod_{i=1}^{n}\left|G_{i-1} / G_{i}\right|
$$

Definition + remark 6.4 Let G be a group.
(i) For subgroups $H_{1}, H_{2} \leqslant G$ let $\left[H_{1}, H_{2}\right]$ denote the subgroup of G generated by all commutators

$$
\left[h_{1}, h_{2}\right]=h_{1} h_{2} h_{1}^{-1} h_{2}^{-1} \quad \text { with } h_{i} \in H_{i} \text { for } i \in\{1,2\}
$$

(ii) $[G, G]=G^{\prime}$ is called the derived or commutator subgroup of G.
(iii) $G^{\prime} \triangleleft G$ and $G^{\mathrm{ab}}:=G / G^{\prime}$ is abelian.
(iv) Let A be an abelian group and $\phi: G \longrightarrow A$ a homomorphism of groups. Let $\pi: G \longrightarrow G^{\text {ab }}$ denote the residue map. Then $G^{\prime} \subseteq \operatorname{ker}(\phi)$, thus ϕ factors to a unique homomorphism

$$
\bar{\phi}: G^{\mathrm{ab}} \longrightarrow A, \quad \text { such that } \phi=\bar{\phi} \circ \pi
$$

(v) The chain

$$
G \triangleright G^{\prime} \triangleright G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right] \triangleright \ldots \triangleright G^{(n+1)}=\left[G^{n}, G^{n}\right]
$$

is called the derived series of G.
(vi) G is solvable if and only if its derived series stops at $\{e\}$.
proof. (iii) For $g \in G, a, b \in G$ we have

$$
g[a b] g^{-1}=g a b a^{-1} b^{-1} g^{-1}=g a \underbrace{g^{-1} g}_{=e} b \underbrace{g^{-1} g}_{=e} a^{-1} \underbrace{g^{-1} g}_{=e} b^{-1} g^{-1}=\left[g a g^{-1}, g b g^{-1}\right] \in G^{\prime} .
$$

Moreover

$$
e=[\bar{a}, \bar{b}]=\overline{[a, b]}=\overline{a b a^{-1} b^{-1}} \quad \Longleftrightarrow \overline{a b}=\bar{a} \bar{b}=\bar{b} \bar{a}=\overline{b a} .
$$

(iv) Let A be an abelian group, $\phi: G \longrightarrow A$ a himomorphism. For $x, y \in G$ we have

$$
\phi([x, y])=\phi\left(x y x^{-1} y^{-1}\right)=\phi(x)=\phi(y) \phi(x)^{-1} \phi(y)^{-1}=e \quad \Longrightarrow \quad G^{\prime} \subseteq \operatorname{ker}(\phi) .
$$

(vi) ' \Leftarrow ' If the derived series of G stops at $\{e\}, G$ has a normal series with abelian factors and is solvable.
${ }^{\prime} \Rightarrow$ ' Let now $G=G_{0} \triangleright \ldots \triangleright G_{n}=\{e\}$ be a normal series with abelian factors. We have to show that $G^{(n)}=\{e\}$.
Claim (a) We have $G^{(i)} \subseteq G_{i}$ for $0 \leqslant i \leqslant n$.
Then we see $G^{(n)} \subseteq G_{n}=\{e\}$ an hence the derived series of G stops at $\{e\}$. It remains to prove the claim.
(a) We have $\pi_{i}: G_{i} \longrightarrow G_{i} / G_{i+1}$ is a homomorphism from G to an abelian group. Then by part (iv), we have $G_{i}^{(1)}=G_{i}^{\prime} \subseteq \operatorname{ker}\left(\pi_{i}\right)=G_{i+1}$.
By induction on n we have $G^{(i)}=\left(G^{(i-1)}\right)^{\prime} \subseteq G_{i}$, hence $\left(G^{(i)}\right)^{\prime} \subseteq G_{i}$?.
Thus we get

$$
G^{(i+1)}=\left(G^{(i)}\right)^{\prime} \subseteq G_{i}^{\prime} \subseteq \operatorname{ker}\left(\pi_{I}\right)=G_{i+1}
$$

which finishes the proof.
Proposition 6.5 A finite group G is solvable if and only if the factors of its composition series are cyclic of prime order.
proof. ' \Rightarrow ' Let

$$
G=G_{1} \triangleright G_{2} \triangleright \ldots \triangleright G_{m}=\{1\}
$$

be a normal series of G with abelian quotients $G_{i}-1 / G_{i}$ for $1 \leqslant i \leqslant m$. Refine it to a composition series
$G=G_{0}=H_{0,0} \triangleright H_{0,1} \triangleright \ldots \triangleright H_{0, d_{0}}=G_{1}=H_{1,0} \triangleright \ldots \triangleright H-1, d_{1}=G_{2} \triangleright \ldots \triangleright G_{m}=\{1\}$.
Then we have

$$
H_{i, j} / H_{i, j+1} \cong H_{i, j} / G_{i+1} / H_{i, j+1} / G_{i+1} \subseteq G_{i} / G_{i+1} / H_{i, j+1} / G_{i+1}
$$

hence $H_{i, j} / H_{i, j+1}$ is isomorphic to a subgroup of a factor group of an abelian group, thus abelian.
' \Leftarrow ' Since the factor groups of the composition series are isomorphic to $\mathbb{Z} / p \mathbb{Z}$ for some primes p, the quotients are abelian, thus G is solvable.

Theorem 6.6 (Jordan - Hölder) Let G be a group and

$$
\begin{aligned}
& G=G_{0} \triangleright G_{1} \triangleright \ldots \triangleright G_{n}=\{e\} \\
& G=H_{0} \triangleright H_{1} \triangleright \ldots \triangleright H_{m}=\{e\}
\end{aligned}
$$

be two composition series of G. Then $n=m$ and there ist $\sigma \in S_{n}$ such that

$$
H_{i} / H_{i+1} \cong G_{\sigma(i)} / G_{\sigma(i)+1} \quad \text { for } 0 \leqslant i \leqslant n-1
$$

proof. We prove the statement by induction on n.
$\mathbf{n}=\mathbf{1} G$ is simple and thus $H_{1}=\{e\}$.
$\mathbf{n}>\mathbf{1}$ Let $\bar{G}:=G / G_{1}$ and $\pi: G \longrightarrow \bar{G}$ be the residue map.
Then $\bar{H}_{i}=\pi\left(H_{i}\right) \diamond \bar{G}$ is a normal subgroup. Since \bar{G} is simple, hence we have $\bar{H}_{i} \in$ $\{\{e\}, \bar{G}\}$. If $\bar{H}_{1}=\bar{G}$, then \bar{H}_{2} is a normal subgroup of $\bar{H}_{1}=\bar{H}$, and so on. Hence we find $j \in\{1, \ldots m\}$ such that

$$
\bar{H}_{i}=\bar{G} \text { for } 0 \leqslant 1 \leqslant j \text { and } \bar{H}_{i}=\{e\} \text { for } j+1 \leqslant i \leqslant m .
$$

Define $C_{i}:=H_{i} \cap G_{1}<G_{1}$ for $0 \leqslant i \leqslant m$.
Claim (a) If $j \leqslant m-2$, then we have a composition series for G_{1} :

$$
G_{1}=C_{0} \triangleright C_{1} \triangleright \ldots \triangleright C_{j} \triangleright C_{j+2} \triangleright \ldots \triangleright C_{m}=\{e\} .
$$

If $j=m-1$, we have a composition series for G_{1} :

$$
G_{1}=C_{0} \triangleright C_{1} \triangleright \ldots \triangleright C_{m-1}=\{e\} .
$$

Clearly $G_{1} \triangleright G_{2} \triangleright \ldots \triangleright G_{n}=\{e\}$ is a composition series, too. By induction hypothesis we have $n-1=m-1$, hence $n=m$. Moreover we have for $i \neq j$

$$
\left.\begin{array}{rl}
C_{i} / C_{i+1} & \cong G_{\sigma(i)} / G_{\sigma(i)+1} \\
C_{j} / C_{j+2} \cong G_{\sigma(j)} / G_{\sigma(j)+1}
\end{array}\right\}(*)
$$

For some $\sigma:\{0,1, \ldots, j, j+2, j+3, \ldots, n-1\} \longrightarrow\{1, \ldots, n-1\}$
Claim (b) We have
(1) $C_{j+1}=C_{j}$
(2) $C_{i} / C_{i+1} \cong H_{i} / H_{i+1}$ for $i \neq j$.
(3) $H_{j} / H_{j+1} \cong \bar{G}=G / G_{1}$.

By (*) and Claim (a),(b) the theorem is proved.
It remains to show the Claims.
(a) C_{i+1} is a normal subgroup of $C_{i}, C_{i+1}=H_{i+1} \cap G_{1}$. Further C_{j+1} is normal in $C_{j}=C_{j+1}$
by Claim (b)(2) and $C_{i} / C_{i+1} \cong H_{i} / H_{i+1}$ for $i \neq j$ is simple by Claim (b)(2). Then $C_{j} / C_{j+2}=C_{j} / C_{j+1}=H_{j} / H_{j+1}$ is simple, too.
(b) (1) We have $H_{j+1} \subseteq G_{1}$, hence $H_{j+1} \cap G_{1}=H_{j+1}=C_{j+1} . C_{j}=H_{j} \cap G_{1}$ is normal subgroup of H_{j}. Thus $H_{j} \triangleright C_{j} \triangleright C_{j+1}=H_{j+1}$. Since H_{i} / H_{i+1} is simple, we must have $C_{j}=C_{j+1}$.
(2) $\mathbf{i}>\mathbf{j}$ Then $C_{i}=H_{i} \cap G_{1}=H_{i}$ since $H_{i} \subseteq G_{1}$.
$\mathbf{i}<\mathbf{j}$ We have $\bar{H}_{i}=\bar{G}=G / G_{1}$. Then we have $G_{1} H_{i}=G(*)$, since:
' \subseteq ' Clear.
' \supseteq ' For $g \in G, \bar{g} \in \bar{G}$ its image there exists $h \in H_{i}$ such that

$$
\bar{h}=\bar{g} \Longrightarrow \bar{h}^{-1} \bar{g} \in G_{1} \Longleftarrow \bar{h}^{-1} \bar{g}=g_{1} \in G_{1} \Longrightarrow g=h g_{1} \in H_{i} G_{1} .
$$

With the isomorphism theorem we obtain

$$
C_{i} / C_{i+1}=C_{i} / H_{i+1} \cap G_{i}=C_{i} / H_{i+1} \cap C_{i} \cong C_{i} H_{i+1} / H_{i+1}
$$

Therefore it remains to show that $C_{i} H_{i+1}=H_{i}$.
' \subseteq ' Since $C_{i}, H_{i+1} \subseteq H_{i}$ we also have $C_{i} H_{i+1} \subseteq H_{i}$
' \supseteq ' Let $x \in H_{i}$. by ($*$) we have $H_{i+1} G_{i}=G$. Then there exists $g \in G_{1}, h \in H_{i+1}$ such that $x=g h$, thus we have $g=x h^{-1} \in H_{i} H_{i+1}=H_{i}$, i.e. $g \in G_{i} \cap H_{i}=C_{1}$ and thus $x \in C_{i} H_{i+1}$.
(3) We have

$$
H_{i} / H_{i+1}=H_{i} / C_{j+1}=H_{j} / C_{j}=H_{j} / H_{j} \cap G_{1}=G_{1} H_{j} / G_{1} \stackrel{(*)}{=} G / G_{1},
$$

which finishes the proof, paragraph and chapter.

Kapitel II

Valuation theory

§ 7 Discrete valuations

Example 7.1 Let $P \in \mathbb{N}$ prime. For $x \in \mathbb{Z} \backslash\{0\}$ let

$$
\nu_{p}(x)=\max \left\{k \in \mathbb{N}\left|p^{k}\right| x\right\}
$$

Then $p^{\nu_{p}(x)} \mid x, \quad p^{\nu_{p}(x)+1} \nmid x$. Example: $\nu_{2}(12)=2$. Write $x=p^{\nu_{p}(x)} \cdot x^{\prime}$ where $p \nmid x^{\prime}$. For $\frac{x}{y} \in \mathbb{Q}^{\times}$ define

$$
\nu_{p}\left(\frac{x}{y}\right)=\nu_{p}(x)-\nu_{p}(y)
$$

This defines a map $\nu_{p}: \mathbb{Q} \longrightarrow \mathbb{Z}$, such that
(i) $v_{p}(a b)=\nu_{p}(a)+\nu_{p}(b)$ (clear)
(ii) $v_{p}(a+b) \geqslant \min \left\{\nu_{p}(a), \nu_{p}(b)\right\}$, since: Write $a=p^{\nu_{p}(a)} \cdot a^{\prime}, b=p^{\nu_{p}(b)} \cdot b^{\prime}$. Let w.l.o.g $\nu_{p}(b) \leqslant$ $\nu_{p}(a)$. Then we have

$$
a+b=p^{\nu_{p}(a)} \cdot a^{\prime}+p^{\nu_{p}(b)} \cdot b^{\prime}=p^{\nu_{p}(b)} \cdot\left(b^{\prime}+a^{\prime} \cdot p^{\nu_{p}(a)-\nu_{p}(b)}\right)
$$

Hence $p^{\nu_{p}(b)} \mid a+b$ and thus $\nu_{p}(a+b) \geqslant \nu_{p}(b)=\min \left\{\nu_{p}(a), \nu_{p}(b)\right\}$.

Definition 7.2 Let k be afield. A discrete valuation on k is a surjectove group homomorphism $\nu_{k}^{\times} \longrightarrow(\mathbb{Z},+)$ satisfying

$$
\nu(x+y) \geqslant \min \{\nu(x), \nu(y)\} \quad \text { for all } x, y \in k^{\times}, x \neq-y
$$

Remark 7.3 Let R be a factorial domain, $k=$ Quot(R). Let further be $p \in R \backslash\{0\}$ be a prime element. Then $\nu_{p}: k^{\times} \longrightarrow \mathbb{Z}$ can be defined as in Example 7.1: Write

$$
x=e \cdot \prod_{p \in \mathbb{P}} p^{\nu_{p}(x)}, \quad e \in R^{\times}
$$

where \mathbb{P} denotes set of representatives of prime elements of R. Then ν_{p} is a discrete valuation on k.

Example 7.4 Let k be a field, $a \in k, R=k[X]$ and $p_{a}=X-a \in k[X]$. For $f \in k[X]$ define $\nu_{p_{a}}(f)=n$ if f has an n-fold root in a, i.e. $f=(X-a)^{n} \cdot g$ for some $0 \neq g \in k[X]$. Then $\nu_{p_{a}}$ is a discrete valuation on $k(X)=\operatorname{Quot}(\mathrm{k}[X])$ satisfying $\left.\nu_{p}\right|_{k}=0$.

Remark 7.5 There is no discrete valuation on \mathbb{C}.
proof. Assume there exists a discrete valuation on \mathbb{C}, say $\nu: \mathbb{C}^{\times} \longrightarrow \mathbb{Z}$. Since ν is surjective, there exists $z \in \mathbb{C}^{\times}$such that $\nu(z)=1$.
Let now $y \in \mathbb{C}^{\times}$such that $y^{2}=z$. Then we have

$$
1=\nu(z)=\nu\left(y^{2}\right)=\nu(y \cdot y)=\nu(y)+\nu(y)=2 \nu(y) \quad \Longleftrightarrow \quad \nu(y)=\frac{1}{2} \notin \mathbb{Z}
$$

which is a contradiction.
Example 7.6 Let $\nu: \mathbb{Q}^{\times} \longrightarrow \mathbb{Z}$ be a nontrivial discrete valuation. Then there exists $a \in \mathbb{Z}$ such that $\nu(a) \neq 0$ and hence we find $p \in \mathbb{P}: \nu(p) \neq 0$.
If $\nu(q)=0$ for all $q \in \mathbb{P}$, then $\nu=\nu_{p}$.
Assume we have $\nu(p) \neq 0 \neq \nu(q)$ for some $p \neq q \in \mathbb{P}$ and write $1=a p+b q$ for suitable $a, b \in \mathbb{Z}$. Then
$0=\nu(1)=\nu(a p+b q) \geqslant \min \{\nu(a p), \nu(b q)\}=\min \{\underbrace{\nu(a)}_{\geqslant 0(*)}+\nu(p), \underbrace{\nu(b)}_{\geqslant 0(*)}+\nu(q)\} \geqslant \min \{\nu(p), \nu(q)\}>0$
Hence a contradiction, i.e. we have $\nu(p) \neq 0$ for at most one $p \in \mathbb{P}$, thus $\nu=\nu_{p}$.
$(*)$ obtain that we have $\nu(1)=\nu(1 \cdot 1)=\nu(1)+\nu(1) \Rightarrow \nu(1)=0$ and by induction

$$
\nu(a)=\nu(1+(a-1)) \geqslant \min \{\nu(1), \nu(a-1)\} \geqslant 0
$$

Proposition 7.7 Let k be a field and $\nu: k^{\times} \longrightarrow \mathbb{Z}$ be a discrete valuation on k.
(i) $\nu(1)=\nu(-1)=0$.
(ii) $\mathcal{O}_{\nu}:=\left\{x \in k^{\times} \mid \nu(x) \geqslant 0\right\} \cup\{0\}$ is a ring, called the valuation ring of ν.
(iii) $\mathfrak{m}_{\nu}:=\left\{x \in k^{\times} \mid \nu(x)>0\right\} \cup\{0\} \triangleleft \mathcal{O}_{\nu}$ is an ideal in \mathcal{O}_{ν}, called the valuation ideal of ν.

More precisely, \mathfrak{m}_{ν} is the only maximal ideal in \mathcal{O}_{ν}, i.e. \mathcal{O}_{ν} is a local ring.
(iv) \mathfrak{m}_{ν} is a principal ideal.
(v) \mathcal{O}_{ν} is a principal ideal domain. More precisely, any ideal $I \neq\{0\}$ in \mathcal{O}_{ν} is of the form $I=\left(t^{d}\right)$ for some $d \in \mathbb{N}$ and $t \in \mathfrak{m}_{\nu}$ with $\nu(t)=1$.
(vi) We have $k=\operatorname{Quot}(\mathrm{R})$ and for $x \in k^{\times}: x \in \mathcal{O}_{\nu}$ or $\frac{1}{x} \in \mathcal{O}_{\nu}$.
proof. (ii) This is strict calculating, which may be verified by the reader.
(iii) \mathfrak{m}_{ν} is an ideal, since for $x, y \in \mathfrak{m}_{\nu}, \alpha \in \mathcal{O}_{\nu}$ we have

$$
\nu(x+y) \geqslant \min \{\nu(x), \nu(y)\}>0, \quad \nu(\alpha x)=\underbrace{\nu(\alpha)}_{\geqslant 0}+\nu(x) \geqslant \nu(x)>0
$$

Let now $x \in \mathcal{O}_{\nu}$ with $\nu(x)=0$. Then

$$
\nu\left(\frac{1}{x}\right)=\nu(1)-\nu(x)=-\nu(x)=0
$$

hence $x \in \mathcal{O}_{\nu}^{\times}$. Thus we have $\mathfrak{m}_{\nu}=\mathcal{O}_{\nu} \backslash \mathcal{O}_{\nu}^{\times}$and the claim follows.
(iv) Let $t \in \mathfrak{m}_{\nu}$ such that $\nu(t)=1$. Then for $x \in \mathfrak{m}_{\nu}$ let $\nu(x)=d>0$. Then we have

$$
\nu\left(x \cdot t^{-d}\right)=\nu(x)+\nu\left(\frac{1}{t^{d}}\right)=d+0-d=0
$$

Define $e:=x \cdot t^{-d} \in \mathcal{O}_{\nu}^{\times}$. Then $x=e \cdot t^{d}$, hence $\mathfrak{m}_{\nu}=(t)$.
(v) Let $\{0\} \neq I \neq \mathcal{O}_{\nu}$ be an ideal in \mathcal{O}_{ν}. Let $d:=\min \{\nu(x) \mid x \in I \backslash\{0\}\}>0$.
' \supseteq ' Let $x \in I$ such that $\nu(x)=d$. By part (iv) we have $x=e \cdot t^{d}$ for some $e \in \mathcal{O}_{\nu}^{\times}$, hence we have $t^{d} \in I$; thus $\left(t^{d}\right) \subseteq I$.
${ }^{\prime} \subseteq$ ' Let now $y \in I \backslash\{0\}$ and write $y=e \cdot t^{\nu(y)}$ for some $e \in \mathcal{O}_{\nu}^{\times}$and $\nu(y)>d$. Then $y=t^{d} \cdot e \cdot t^{\nu(y)-d}$, hence $y \in\left(t^{d}\right)$ and thus $I \subseteq\left(t^{d}\right)$.
(vi) If $\nu(x) \geqslant 0$, then $x \in \mathcal{O}_{\nu}$. If $\nu(x)<0$, we have

$$
\nu\left(\frac{1}{x}\right)=\nu(1)-\nu(x)=-\nu(x)>0, \quad \text { hence } \frac{1}{x} \in \mathfrak{m}_{\nu} \subseteq \mathcal{O}_{\nu}
$$

which we wanted to show.

Definition 7.8 An integral domain R is called a discrete valuation ring, if there exists a discrete valuation ν of $k=\operatorname{Quot}(\mathrm{R})$ such that $R=\mathcal{O}_{\nu}$.

Proposition 7.9 Let R be a lokal integral domain. Then the following statements are equivalent.
(i) R is a discrete valuation ring.
(ii) R is a principal ideal domain.
(iii) There exists $t \in R \backslash\{0\}$ such that every $x \in R \backslash\{0\}$ can uniquely be written in the form

$$
x=e \cdot t^{d} \quad \text { for some } e \in R^{\times}, d \geqslant 0
$$

proof. ${ }^{\prime}(\mathrm{i}) \Rightarrow(\mathrm{ii})^{\prime}$ This follows by 7.7.
$'($ ii $) \Rightarrow($ iii)' We know that principal ideal domains are factorial. Let $t \in R$ be a generator of the maximal ideal \mathfrak{m} of R. Then t is prime, since any maximal ideal is also prime. Let now $p \in R \backslash\{0\}$ a prime element. Then $p \notin R^{\times}$, hence $p \in \mathfrak{m}$, thus we can write $p=t \cdot x$ for some $x \in R$. Since p is prime, hence irreducible, we have $x \in R^{\times} \Rightarrow(p)=(t)$. Thus we
have $p=t$ and we have only one prime element in R. The unique prime factorization in factorial domains gives us $x=e \cdot t^{d}$ for some $e \in R^{\times}$and $d \geqslant 0$.
'(iii) $\Rightarrow(\mathrm{i})$ ' For $x=e \cdot t^{d} \in R \backslash\{0\}, e \in R^{\times}, d \geqslant 0$ define $\nu(x)=d$. We claim that ν is discrete valuation. We have

$$
\nu(x y)=\nu\left(e t^{d} \cdot e^{\prime} t^{d^{\prime}}\right)=\nu\left(e e^{\prime} t^{d+d^{\prime}}\right)=\nu\left(e^{\prime \prime} t^{d+d^{\prime}}\right)=d+d^{\prime}
$$

Let w.l.o.g. $d \leqslant d^{\prime}$. Then

$$
\nu(x+y)=\nu\left(e t^{d}+e^{\prime} t^{d^{\prime}}\right)=\nu\left(t^{d}\left(e+e^{\prime} t^{d^{\prime}-d}\right)\right) \geqslant d=\min \left\{d, d^{\prime}\right\}
$$

which we extend to

$$
\nu: k^{\times} \longrightarrow \mathbb{Z}, \quad \nu\left(\frac{x}{y}\right)=\nu(x)-\nu(y) .
$$

This is well defined: For $\frac{x}{y}=\frac{x^{\prime}}{y^{\prime}}$ we have $x y^{\prime}=x^{\prime} y$ and $\nu\left(x^{\prime} y\right)=\nu(x)+\nu\left(y^{\prime}\right)=\nu\left(x^{\prime}\right)+\nu(y)$, thus

$$
\nu\left(\frac{x}{y}\right)=\nu(x)-\nu(y)=\nu\left(x^{\prime}\right)-\nu\left(y^{\prime}\right)=\nu\left(\frac{x^{\prime}}{y^{\prime}}\right) .
$$

Finally we have $\nu(t)=1$, hence $\nu: k^{\times} \longrightarrow \mathbb{Z}$ is surjective. Thus ν is a discrete valuation on k and $R=\mathcal{O}_{\nu}$.

Definition + proposition 7.10 Let R be a local ring with maximal ideal \mathfrak{m}.
(i) $k:=R / \mathfrak{m}$ is called the residue field of R.
(ii) $\mathfrak{m} / \mathfrak{m}^{2}$ has a structure of a k-vector space.
(iii) If R is a discrete valuation ring, then $\operatorname{dim}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=1$.
proof. (ii) For $a \in R, x \in \mathfrak{m}$ define $\overline{a x}=\overline{a x}$, where \bar{a}, \bar{x} are the images of a, x in k.
This is well defined: Let $a^{\prime} \in R$ with $\overline{a^{\prime}}=\bar{a}$ and $x^{\prime} \in \mathfrak{m}$ with $\overline{x^{\prime}}=\bar{x}$. We have to show that

$$
\overline{a^{\prime} x^{\prime}}=\overline{a x} \Longleftrightarrow a^{\prime} x^{\prime}-a x \in \mathfrak{m}^{2}
$$

We have $\overline{a^{\prime}}=\bar{a}$, hence $a^{\prime}=a+y$ for some $y \in \mathfrak{m}$. Analogously we have $\overline{x^{\prime}}=\bar{x}$, hence $x^{\prime}=x+$ for some $z \in \mathfrak{m}^{2}$. Thus we have

$$
a^{\prime} x^{\prime}=(a+y)(b+z)=a x+a z+x y+y z \equiv a x \quad \bmod \mathfrak{m}^{2},
$$

which finishes the proof.

§ 8 The Gauß Lemma

Let R be a UFD (unique factorization domain), \mathbb{P} a set of representatives of the primes in R with respect to associateness, i.e. $x \sim y \Leftrightarrow y=u \cdot x$ for some $u \in R^{\times}$. Every $x \in R \backslash\{0\}$ has a unique factorization

$$
x=u \cdot \prod_{p \in \mathbb{P}} p^{\nu_{p}(x)}, \quad \nu_{p}(x) \geqslant 0 \text { for } p \in \mathbb{P}, u \in R^{\times}
$$

where $\nu_{p}: k^{\times} \longrightarrow \mathbb{Z}$ is a discrete valuation on $k=\operatorname{Quot}(R)$.
Definition + proposition 8.1 Let R be a factorial domain, $k=\operatorname{Quot}(R)$ and

$$
f=\sum_{i=0}^{n} a_{i} X^{i} \in k[X] \backslash\{0\}, \quad a_{n} \neq 0
$$

(i) For $p \in \mathbb{P}$ let $\nu_{p}(f)=\min \left\{\nu_{p}\left(a_{i}\right) \mid 0 \leqslant i \leqslant n\right\}$.
(ii) f is called primitive, if $\nu_{p}(f)=0$ for all $p \in \mathbb{P}$.
(iii) If f is primitive, then $f \in R[X]$.
(iv) If $f \in R[X]$ is monic, i.e. $a_{n}=1$, then f is primitive.
(v) There exists $c \in k^{\times}$such that $c \cdot f$ is primitive.
proof. (iii) If f is primitive, we have $\min _{1 \leqslant i \leqslant n}\left\{\nu_{p}\left(a_{i}\right)\right\}=0$, i.e. $\nu_{p}\left(a_{i}\right) \geqslant 0$ for all $1 \leqslant i \leqslant n$. Thus $a_{i} \in R$ and $f \in R[X]$.
(iv) If $a_{i} \in R$ we have $\nu_{p}\left(a_{i}\right) \geqslant 0$ for all $1 \leqslant i \leqslant n$. Moreover $\nu_{p}\left(a_{n}\right)=\nu_{p}(1)=0$, hence $\nu_{p}(f)=\min _{1 \leqslant i \leqslant n}\left\{\nu_{p}\left(a_{i}\right)\right\}=0$. thus f is primitive.
(v) For $\nu_{p}(f):=d$ choose $c:=p^{-d} \in k^{\times}$. Then

$$
\nu_{p}(c \cdot f)=\nu_{p}(c)+\nu_{p}(f)=\nu_{p}\left(p^{-d}\right)+d=-d+d=0
$$

thus $c \cdot f$ is primitive.
Proposition 8.2 (Gauß-Lemma) For $f, g \in k[X]$ and $p \in \mathbb{P}$ we have

$$
\nu_{p}(f \cdot g)=\nu_{p}(f)+\nu_{p}(g)
$$

proof. Write

$$
f=\sum_{i=0}^{n} a_{i} X^{i}, \quad g=\sum_{j=0}^{m} b_{j} X^{j}, \quad f \cdot g=\sum_{k=0}^{m+n} c_{k} X^{k}, \quad c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}
$$

case 1 Assume $m=0$, i.e. $g=b_{0} \in k^{\times}$. Then $c_{k}=a_{k} \cdot b_{0}$, hence

$$
\nu_{p}\left(c_{k}\right)=\nu_{p}\left(a_{k}\right)+\nu_{p}\left(b_{0}\right)
$$

Then we obtain
$\nu_{p}(f \cdot g)=\min _{0 \leqslant k \leqslant n} \nu_{p}\left(c_{k}\right)=\min _{0 \leqslant k \leqslant n}\left\{\nu_{p}\left(a_{k}\right)+\nu_{p}\left(b_{0}\right)\right\}=\nu_{p}\left(b_{0}\right)+\min _{0 \leqslant k \leqslant n}\left\{\nu_{p}\left(a_{k}\right)\right\}=\nu_{p}(g)+\nu_{p}(f)$
case 2 Assume $\nu_{p}(f)=0=\nu_{p}(g)$, i.e. f, g are primitive. Clearly $\nu_{p}(f g) \geqslant 0$. We have to show: $\nu_{p}(f g)=0$. Let $i_{0}:=\max \left\{i \mid \nu_{p}\left(a_{i}\right)=0\right\}$ and $j_{0}:=\max \left\{j \mid \nu_{p}\left(b_{j}\right)=0\right\}$. Then

$$
c_{i_{0}+j_{0}}=\sum_{i=0}^{i_{0}+j_{0}} a_{i} b_{i_{0}+j_{0}-i}=\underbrace{\sum_{i=0}^{i_{0}-1} a_{i} b_{i_{0}+j_{0}-i}}_{(A)}+a_{i_{0}+j_{0}}+\underbrace{\sum_{i=i_{0}+1}^{i_{0}+j_{0}} a_{i} b_{i_{0}+j_{0}-i}}_{(B)}
$$

We have $\nu_{p}\left(a_{i_{0}} b_{j_{0}}\right)=\nu_{p}\left(a_{i_{0}}\right)+\nu_{p}\left(b_{j_{0}}\right)=0$. We have $i_{0}+j_{0}-i>j_{0}$, hence $\nu_{p}\left(b_{i_{0}+j_{0}-i}\right) \geqslant 1$ for $0 \leqslant i \leqslant i_{0}-1$. Then

$$
\begin{aligned}
\nu_{p}(A)=\nu_{p}\left(\sum_{i=0}^{i_{0}-1} a_{i} b_{i_{0}+j_{0}-i}\right) & \geqslant \min _{0 \leqslant i \leqslant i_{0}-1}\left\{\nu_{p}\left(a_{i} b_{i_{0}+j_{0}-1}\right)\right\} \\
& =\min _{0 \leqslant i \leqslant i_{0}-1}\left\{v_{p}\left(a_{i}\right)+\nu_{p}\left(b_{i_{0}+j_{0}-1}\right)\right\} \\
& \geqslant \min _{0 \leqslant i \leqslant i_{0}-1}\left\{\nu_{p}\left(b_{i_{0}+j_{0}-1}\right)\right\} \\
& \geqslant 1 \\
\nu_{p}(B)=\nu_{p}\left(\sum_{i=i_{0}+1}^{i i_{0}+j_{0}} a_{i} b_{i_{0}+j_{0}-i}\right) & \geqslant 1 .
\end{aligned}
$$

Since we have

$$
0=\nu_{p}\left(a_{i_{0}} b_{j_{0}}\right) \geqslant \min \left\{\nu_{p}\left(c_{i_{0}+j_{0}}\right), \nu_{p}(A), \nu_{p}(B)\right\}=\nu_{p}\left(c_{i_{0}+j_{0}}\right)=0
$$

we get $\nu_{p}\left(c_{i_{0}+j_{0}}\right)=0$. Hence we obtain

$$
\nu_{p}(f g)=\min \left\{\nu_{p}\left(c_{i}\right) \mid 0 \leqslant i \leqslant m+n\right\}=\nu_{p}\left(c_{i_{0}+j_{0}}\right)=0
$$

case 3 Consider now the general case, i.e. f, g are arbitrary. Multiply f and g by suitable constants a and b, such that $\tilde{f}:=a f$ and $\tilde{g}:=b g$ are primitive. Then by the first two cases we have

$$
\begin{aligned}
\nu_{p}(f g) & =\nu_{p}\left(\frac{1}{a} \frac{1}{b} \tilde{f} \tilde{g}\right) \stackrel{1}{=} \nu_{p}\left(\frac{1}{a} \frac{1}{b}\right)+\nu_{p}(\tilde{f} \tilde{g}) \stackrel{2}{=} \nu_{p}\left(\frac{1}{a}\right)+\nu_{p}\left(\frac{1}{b}\right)+\underbrace{\nu_{p}(\tilde{f})}_{=0}+\underbrace{\nu_{p}(\tilde{g})}_{=0} \\
& =\nu_{p}\left(\frac{1}{a}\right)+\nu_{p}(\tilde{f})+\nu_{p}\left(\frac{1}{b}\right)+\nu_{p}(\tilde{g})=\nu_{p}\left(\frac{1}{a} \tilde{f}\right)+\nu_{p}\left(\frac{1}{b} \tilde{g}\right) \\
& =\nu_{p}(f)+\nu_{p}(g),
\end{aligned}
$$

which finishes the proof.

Theorem 8.3 (Eisenstein's criterion for irreducibility) Let R be a factorial domain, $p \in \mathbb{P}$ and

$$
f=\sum_{i=0}^{n} a_{i} X^{i} \quad \in R[X] \backslash\{0\}
$$

Assume that f is primitive and we have
(i) $\nu_{p}\left(a_{0}\right)=1$,
(ii) $\nu_{p}\left(a_{i}\right) \geqslant 1$ or $a_{i}=0$ for $1 \leqslant i \leqslant n-1$ and
(iii) $\nu_{p}\left(a_{n}\right)=0$

Then f is irreducible over $R[X]$.
proof. Assume that $f=g \cdot h$ with some $g, h \in R[X]$. Write

$$
g=\sum_{i=0}^{r} b_{i} X^{i}, \quad h=\sum_{j=0}^{s} c_{i} X^{j}, \quad \text { with } r+s=n
$$

Then we have $a_{0}=b_{0} c_{0}$. W.l.o.g. $\nu_{p}\left(b_{0}\right)=1$ and $\nu_{p}\left(c_{0}\right)=0$. Further $a_{n}=b_{r} c_{s}$, thus we must have $\nu_{p}\left(b_{r}\right)=\nu_{p}\left(c_{s}\right)=0$ for $\nu_{p}\left(a_{n}\right)=0$. Let now

$$
d:=\max \left\{i \mid \nu_{p}\left(b_{j}\right) \geqslant 1 \text { for } 0 \leqslant j \leqslant i\right\}
$$

Obviously $0 \leqslant d \leqslant r-1$. Consider

$$
a_{d+1}=\underbrace{b_{d+1} c_{0}}_{=: A}+\underbrace{\sum_{i=0}^{d} b_{i} c_{d+1-i}}_{=: B} .
$$

We have

$$
\begin{gathered}
\nu_{p}(A)=\nu_{p}\left(b_{d+1}\right)+\nu_{p}\left(c_{0}\right)=0+0=0, \\
\nu_{p}(B) \geqslant \min _{0 \leqslant i \leqslant d}\left\{\nu_{p}\left(b_{i} c_{d+1-1}\right) \geqslant 1\right.
\end{gathered}
$$

and thus $\nu_{p}\left(a_{d+1}\right)=0$. But this implies $d+1=n \Leftrightarrow n-1=d \leqslant r-1 \Rightarrow n \leqslant r \Rightarrow n=r$. Then we have $s=0$, thus $h=c_{0}$ is constant. Further for $q \in \mathbb{P}$ we have

$$
0=\nu_{q}(f)=\nu_{q}\left(g c_{o}\right)=\underbrace{\nu_{q}(g)}_{\geqslant 0}+\nu_{q}\left(c_{0}\right)
$$

i.e. $\nu_{q}\left(c_{0}\right)=0$, hence $c_{0} \in R^{\times}$and f is irreducible.

Theorem 8.4 (Gauß) Let R be a factorial domain. Then $R[X]$ is factorial.
proof. Let $f \in R[X] \backslash\{0\} \subseteq k[X]$ where $k=\operatorname{Quot}(R)$. Since $k[X]$ is factorial, we can write

$$
f=c \cdot f_{1} \cdots f_{n}, \quad f_{i} \in k[X] \text { prime }, c \in k^{\times}
$$

W.l.o.g the. f_{i} are primitive, otherse multiply them by suitable constants. In particular we have $f_{i} \in R[X]$. Note that $c \in R$: For $p \in \mathbb{P}$, we have

$$
0=\nu_{p}(f)=\nu_{p}(c)+\sum_{i=1}^{n} \nu_{p}\left(f_{i}\right)=\nu_{p}(c)
$$

Write $c=\epsilon \cdot p_{1} \cdots p_{r}$ with some $\epsilon \in R^{\times}$and $p_{i} \in \mathbb{P}$.Then by
Claim (a) $f_{i} \in R[X]$ are prime for $1 \leqslant i \leqslant n$.
Claim (b) $p_{i} \in R[X]$ are prime for $1 \leqslant i \leqslant r$.
we have found a factorization of f into prime elements and hence $R[X]$ is factorial. Now prove the claims.
(a) Let $g, h \in R[X]$ such that $g h \in\left(f_{i}\right)=f_{i} R[X]$.

May assume that $g \in f_{i} k[X]$, i.e. $g=f_{i} \tilde{g}$ for some $\tilde{g} \in k[X]$. For $p \in \mathbb{P}$ we obtain

$$
0 \leqslant \nu_{p}(g)=\underbrace{\nu_{p}\left(f_{i}\right)}_{=0}+\nu_{p}(\tilde{g})=\nu_{p}(\tilde{g}) .
$$

Thus we get $\tilde{g} \in R[X]$, which implies $g=f_{i} \tilde{g} \in f_{i} R[X]=\left(f_{i}\right)$.
(b) Since $\pi: R \longrightarrow R /(p)$ induces a map $\psi: R[X] \longrightarrow R /(p)[X]$ with $\operatorname{ker}(\psi)=p R[X]$ we have

$$
R[X] / p R[X] \cong R / p R[X] .
$$

Since $R / p R$ is an integral domain, (p) is prime.

Corollary 8.5 Let k be a field. Then $k\left[X_{1}, \ldots X_{n}\right]$ is factorial for any $n \in \mathbb{N}$.

Corollary 8.6 Let R be a factorial domain, $k=Q u o t(R)$. If $f \in R[X]$ is irreducible over $R[X]$, then f is irreducible over $k[X]$.
proof. Let $0 \neq f=c \cdot f_{1} \cdots f_{n}$ be decomposition of f in $k[X]$, i.e. $c \in k^{\times}$and $f_{i} \in k[X]$ irreducible for $1 \leqslant i \leqslant n$. We may assume that the f_{i} are primitive, hence contained in $R[X]$, since we can multiply them by suitable constants. We still have to show $c \in R$. Since $f \in k[X]$, i.e. $\nu_{p}(f) \geqslant 0$ we have

$$
\nu_{p}(f)=\nu_{p}\left(c \cdot f_{1} \cdots f_{n}\right)=\nu_{p}(c)+\sum_{i=1}^{n} \underbrace{\nu_{p}\left(f_{i}\right)}_{=0}=\nu_{p}(c) \stackrel{!}{\geqslant} 0
$$

Thus $c \in R$. Then the decomposition from above is in R - but since f is irreducible in R, we have $n=1$ and $c \in R^{\times}$.

§ 9 Absolute values

Definition 9.1 Let k be a field. A map

$$
|\cdot|: k \longrightarrow \mathbb{R}_{\geqslant 0}
$$

is called an absolute value, if
(i) positive definiteness: $|x|=0 \Longleftrightarrow x=0$
(ii) multiplicativeness: $|x y|=|x| \cdot|y|$ for all $x, y \in k$.
(iii) triangle inequality: $|x+y| \leqslant|x|+|y|$ for all $x, y \in k$.

Example 9.2 (i) The 'normal' absolute value $|\cdot|_{\infty}$ on \mathbb{C} and on any of its subfields denotes an absolute value.
(ii) Let $\nu_{k}^{\times} \longrightarrow \mathbb{Z}$ be a discrete valuation, $\rho \in(0,1)$. Then

$$
|\cdot|_{\nu}: k \longrightarrow \mathbb{R}, x \mapsto \begin{cases}\rho^{\nu(x)} & x \neq 0 \\ 0 & x=0\end{cases}
$$

is an absolute value on k, since
(1) Trivial, since $|0|=0$ and $\rho^{x} \neq 0$ for any $x \in \mathbb{Z}$.
(2) Clearly $|x y|_{\nu}=\rho^{\nu(x y)}=\rho^{\nu(x)+\nu(y)}=\rho^{\nu(x)} \rho^{\nu(y)}=|x|_{\nu}|y|_{\nu}$.
(3) Further

$$
|x+y|_{\nu}=\rho^{\nu(x+y)} \leqslant \rho^{\min \{\nu(x), \nu(y)\}}=\max \left\{\rho^{\nu(x)}, \rho^{\nu(y)}\right\}=\max \left\{|x|_{\nu},|y|_{\nu}\right\} \leqslant|x|_{\nu}+|y|_{\nu}
$$

(iii) For the p-adic valuation ν_{p} on \mathbb{Q} we choose $\rho:=\frac{1}{p}$. Then $|x|_{p}=p^{-\nu_{p}(x)}$ is an absolute value.

Remark + definition 9.3 Let k be a field, $|\cdot|$ an absolute value on k.
(i) $|1|=|-1|=1$ and $|x|=|-x|$ for all $x \in k$.
(ii) The absolute value is called trivial, if $|x|=1$ for all $x \in k$.
proof. We have $|1|=|1 \cdot 1|=|1| \cdot|1|$, hence $|1|=1$. Moreover $|-1|=|1 \cdot(-1)|=|1| \cdot|-1|$, hence $|-1|=1$. For $x \in k$ we have $|-x|=|(-1) \cdot x|=|-1| \cdot|x|=|x|$.

Proposition + definition 9.4 Let k be a field with $\operatorname{char}(k)=0$, i.e. $k \supseteq \mathbb{Q}$ and $|\cdot|$ an absolute value on k.
(i) $|\cdot|$ is called archimedean, if $|n|>1$ for all $n \in \mathbb{Z} \backslash\{-1,0,1\}$.
(ii) $|\cdot|$ is called nonarchimedean, if $|n| \leqslant 1$ for all $n \in \mathbb{Z}$.
(iii) $|\cdot|$ is either archimedean or nonarchimedean.
(iv) The p-adic absolute value on \mathbb{Q} is nonarchimedean.
proof of (iii). Since $|n|=|-n|$, it suffices to check $n \in \mathbb{N}$. Let $a \in \mathbb{N} \subseteq k$ with $|a|>1$. Assume there exists $b \in \mathbb{N}_{>1}$ with $|b| \leqslant 1$. Write

$$
a=\sum_{i=0}^{N} \alpha_{i} b^{i} \quad \alpha_{i} \in\{0, \ldots b-1\},|N|=\left\lfloor\log _{b}(a)\right\rfloor .
$$

Then we have

$$
\begin{gathered}
|a| \leqslant \sum_{i=0}^{\left\lfloor\log _{b}(a)\right\rfloor}\left|\alpha_{i}\right||b|^{i} \leqslant \log _{b}(a) \cdot \max _{0 \leqslant i \leqslant\left\lfloor\log _{b}(a)\right\rfloor}\left\{\left|\alpha_{i}\right|\right\}=: \log _{b}(a) \cdot c \\
\left|a^{n}\right| \leqslant \log _{b}\left(a^{n}\right) \cdot c=n \cdot \log _{b}(a) \cdot c
\end{gathered}
$$

and $\left|a^{n}\right|$ grows linearly in n. Likewise we get for $n \in \mathbb{N}$

$$
\begin{gathered}
a^{n}=\sum_{i=0}^{\left\lfloor\log _{b}\left(a^{n}\right)\right\rfloor} \alpha_{i}^{(n)} b^{i}, \quad \alpha_{i}^{(n)} \in\{0, \ldots b-1\}, \\
\left|a^{n}\right|=|a|^{n} \leqslant\left(\log _{b}(a) \cdot c\right)^{n}
\end{gathered}
$$

which grows exponentially in n, which is a contradiction. Hence the claim follows.
Remark 9.5 An absolute value $|\cdot|$ on a field k induces a metric

$$
d(x, y):=|x-y|, \quad x, y \in k
$$

Therefore, k as a topology and aspects as 'convergence' and 'cauchy sequences' are meaningful.
Definition + remark 9.6 (i) Two absolute values $|\cdot|_{1},|\cdot|_{2}$ on k are called equivalent, if there exists $s \in \mathbb{R}$, such that $|x|_{1}=|x|_{2}^{s}$ for all $x \in k$. In this case, we write $|\cdot|_{1} \sim|\cdot|_{2}$.
(ii) Two absolutes values $|\cdot|_{1},|\cdot|_{2}$ are equivalent if and only if the induce the same topology on k.
proof. Is left for the reader as an exercise.
Example 9.7 The p-adic absolute values on \mathbb{Q} are not equivalent for $p \neq q \in \mathbb{P}$. Consider

$$
\left|p^{n}\right|_{p}=p^{-n} \xrightarrow{n \rightarrow \infty} 0, \quad\left|p^{n}\right|_{q}=1 \text { for all } n \in \mathbb{N}
$$

Moreover we have $|\cdot| p \nsim|\cdot|_{\infty}$, since by the transittivity of equivalence of absolute values, we have

$$
|\cdot|_{p} \sim|\cdot|_{\infty} \sim|\cdot|_{q}
$$

which is not true.

Theorem 9.8 (Ostrowski) Any nontrivial absolute value $|\cdot|$ on \mathbb{Q} is equivalent either to the standard absolute value $|\cdot|_{\infty}$ on \mathbb{Q} or to a p-adic absolute value $|\cdot|_{p}$ for some $p \in \mathbb{P}$.
proof. case 1 Assume $|\cdot|$ is nonarchimedean. We want to show, that in this case $|\cdot| \sim|\cdot|_{p}$ for some $p \in \mathbb{P}$. Since $|\cdot|$ is non-trivial, there exists $x \in \mathbb{N}$ such that

$$
|x|=\left|\prod_{p \in \mathbb{P}} p^{\nu_{p}(x)}\right|=\prod_{p \in \mathbb{P}}|p|^{\nu_{p}(x)} \neq 1
$$

for at least one $x \in \mathbb{Q}$, hence, we have $|p| \neq 1$ for at least one $p \in \mathbb{P}$, i.e. $|p|<1$. Assume there is another prime $q \neq p$ with $|q|<1$. Then we find $N \in \mathbb{N}$, such that

$$
|p|^{N} \lessgtr \frac{1}{2}, \quad|q|^{N} \lessgtr \frac{1}{2}
$$

Moreover, since p^{N}, q^{N} are coprime, we can write

$$
1=a \cdot p^{N}+b \cdot q^{N} \quad \text { for suitable } a, b \in \mathbb{Z}
$$

So the contradiction follows by

$$
1=|1|=\left|a p^{N}+b q^{N}\right| \leqslant \underbrace{|a|}_{\leqslant 1} \underbrace{\left|p^{N}\right|}_{<\frac{1}{2}}+\underbrace{|b|}_{\leqslant 1} \underbrace{\left|q^{N}\right|}_{<\frac{1}{2}}<1
$$

hence we have $|q|=1$ for any $q \neq p \in \mathbb{P}$. Let now $s:=-\log _{p}|p|$. For $x \in \mathbb{Q}^{\times}$we obtain

$$
|x|=\left|\prod_{\tilde{p} \in \mathbb{P}} \tilde{p}^{\nu_{\tilde{p}}(x)}\right|=\prod_{\tilde{p} \in \mathbb{P}}|\tilde{p}|^{\nu_{\tilde{p}}(x)}=|p|^{\nu_{p}(x)}=p^{-s \cdot \nu_{p}(x)}=\left(p^{-\nu_{p}(x)}\right)^{s}=|x|_{p}^{s}
$$

thus we have $|\cdot| \sim|\cdot|_{p}$.
case 2 Let now $|\cdot|$ be archimedean. We now have to show $|\cdot| \sim|\cdot|_{\infty}$. For $n \in \mathbb{N}_{\geqslant 2}$ we have

$$
1<|n|=\left|\sum_{i=1}^{n} 1\right| \leqslant \sum_{i=1}^{n}|1|=n
$$

For any $a \in \mathbb{N}_{\geqslant 2}$ we find $s:=s(a) \in \mathbb{R}_{<0}$ such that

$$
|a|=|a|_{\infty}^{s}=a^{s}
$$

namely

$$
s=\log _{a}(|a|)=\frac{\log (|a|)}{\log (a)}
$$

Claim (a) We have

$$
\frac{\log (|a|)}{\log (a)}=\frac{\log (|2|)}{\log (2)}
$$

Since now s is independent of a, we have $|\cdot| \sim|\cdot|_{\infty}$. Prove now the claim:
(a) For $n \in \mathbb{N}$ write

$$
2^{n}=\sum_{i=0}^{N} \alpha_{i} a^{i} \text { with } \alpha_{i} \in\{0, \ldots a-1\} \text { and } N \leqslant \log _{a} 2^{n}=n \cdot \frac{\log (2)}{\log (a)} .
$$

Then we have

$$
|2|^{n}=\left|2^{n}\right| \leqslant \sum_{i=0}^{N} \underbrace{\left|\alpha_{i}\right|}_{\leqslant \alpha_{i}<a} \overbrace{|a|^{i}} \leqslant|a|^{N} \leqslant(N+1)^{\cdot a \cdot} \cdot|a|^{N},
$$

hence we get

$$
\begin{aligned}
n \cdot \log (|2|) & \leqslant \log (N+1)+\log (a)+N \log (|a|) \\
& \leqslant \log \left(n \cdot \frac{\log (2)}{\log (a)}+1\right)+\log (a)+n \cdot \frac{\log (2)}{\log (a)} \cdot \log (|a|) .
\end{aligned}
$$

Multiplying the equation by $\frac{1}{n} \cdot \frac{1}{\log (2)}$ gives us

$$
\frac{\log (|2|)}{\log (2)} \leqslant \frac{1}{n} \cdot \log \left(n \cdot \frac{\log (2)}{\log (a)}+1\right)+\frac{\log (|a|)}{\log (a)}
$$

and thus

$$
\frac{\log (|2|)}{\log (2)} \leqslant \frac{\log (|a|)}{\log (a)} .
$$

Swapping the roles of a and 2 in the equation above gives us the other inequality. Hence we have equality, which proves the claim.

Proposition 9.9 Let $|\cdot|$ be a nonarchimedean absolute value on a field k.
(i) $|x+y| \leqslant \max \{|x|,|y|\}$ for all $x, y \in k$.
(ii) If $|x| \neq|y|$, then equality holds in (i).
proof. (i) If $x=0$, we have $|y+x|=|y| \leqslant \max \{0,|y|\}=\max \{|x|,|y|\}$. Thus assume $x \neq 0$. We have $|x+y|=|x|\left|1+\frac{y}{x}\right|$. It suffices to show $|x+1| \leqslant \max \{1,|x|\}$. Then we get

$$
|x+y|=|y| \cdot\left|1+\frac{x}{y}\right| \leqslant|y| \cdot \max \left\{\left|\frac{x}{y}\right|,|1|\right\} \leqslant \max \{|x|,|y|\}
$$

For $n \in \mathbb{N}$ we have

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

Then we have

$$
|x+1|^{n}=\left|(x+1)^{n}\right|=\left|\sum_{k=0}^{n}\binom{n}{k} x^{k}\right| \leqslant \sum_{k=0}^{n}|\underbrace{\binom{n}{k}}_{\leqslant 1}| \underbrace{|x|}_{\leqslant 1}{ }^{k} \leqslant n+1
$$

hence

$$
|x+1| \leqslant \sqrt[n]{n+1} \quad \text { for all } n \in \mathbb{N}
$$

Thus $|1+x| \leqslant 1$. Since we clearly have $|x+1| \leqslant|x|$, we all in all have

$$
|x+1| \leqslant \max \mid\{|x|, 1\} .
$$

(ii) Let $z=x+y$ and assume $|x|<|y|$. We have to show $|z|=|y|$. Assume $|z|<|y|$. Then

$$
|y|=|z-x| \stackrel{(i)}{\leqslant} \max \{|z|,|-x|\}<|y| \quad \text { z }
$$

and the proof is done.

Proposition 9.10 Let $|\cdot|$ be an a nonarchimedean absolute value on a field k. Then
(i) We have a local ring

$$
\overline{\mathcal{B}}_{1}(0):=\{x \in k| | x \mid \leqslant 1\}=: \mathcal{O}_{k}
$$

with maximal ideal

$$
\mathcal{B}_{1}(0):=\{x \in k| | x \mid<1\}=: \mathfrak{m}_{k}
$$

(ii) Every point in ball is its center.
(iii) Balls are either disjoint or one of them is contained in the other one.
(iv) All triangles are isosceles.
proof. (i) By 9.8(i), $\mathcal{B}_{1}(0)$ is closed under Addition. The remaining is calculating.
(ii) Let $z \in \overline{\mathcal{B}}_{r}(x)$. To show: $\overline{\mathcal{B}}_{r}(z)=\overline{\mathcal{B}}_{r}(x)$.
$' \subseteq$ ' Let $y \in \overline{\mathcal{B}}_{r}(z)$, i.e. we have $|y-z| \leqslant r$. Then

$$
|y-x|=|y-z+z-x| \leqslant \max \{|y-z|,|z-x|\} \leqslant r \quad \Rightarrow \quad y \in \overline{\mathcal{B}}_{r}(x)
$$

Thus we have $\overline{\mathcal{B}}_{r}(z) \subseteq \overline{\mathcal{B}}_{r}(x)$.
'〇' Follows by symmetry.
(iii) Let $\mathcal{B}:=\overline{\mathcal{B}}_{r}(x), \mathcal{B}^{\prime}:=\overline{\mathcal{B}}_{r^{\prime}}\left(x^{\prime}\right)$ and $y \in \mathcal{B} \cap \mathcal{B}^{\prime}$. W.l.o.g. $r \leqslant r^{\prime}$.

Then for $z \in \mathcal{B}$ we have

$$
\left|z-x^{\prime}\right|=\left|z-x+x-y+y-x^{\prime}\right| \leqslant \max \left\{|z-x|,|x-y|,\left|y-x^{\prime}\right|\right\}=\max \left\{r, r, r^{\prime}\right\}=r^{\prime}
$$

which implies $z \in \mathbb{B}^{\prime}$. Hence we have $\mathcal{B} \subseteq \mathcal{B}^{\prime}$.
(iv) Follows from 9.8(ii).

Corollary 9.11 Let k be a field, $|\cdot|$ a nonarchimedean absolute value on k.
(i) All balls are closed and open, considering the topology on k induced by the metric $d(x, y)=$ $|x-y|$.
(ii) k is totally disconnected, i.e. no subset of k containing more than on element is connected.
proof. (i) Let $\mathcal{B}:=\overline{\mathcal{B}}_{r}(x)$ be a closed ball for some $x \in k, r \in \mathbb{R} \geqslant 0$. Then \mathcal{B} topologically clearly is closed. Let now $y \in \mathcal{B}$. Then $\mathcal{B}_{r}(y) \subseteq \mathcal{B}$ by 9.9 (ii), i.e. \mathcal{B} is open.
Let now $\mathcal{B}:=\mathcal{B}_{r}(x)$ be an open ball and $y \in k$ a boundary point. Thus for all $s>0$ we find $z \in \mathcal{B}_{s}(x) \cap \mathcal{B}_{r}(x)$. Choose $s \leqslant r$. Then

$$
d(x, y) \leqslant \max \{d(y, z), d(x, z)\}<\max \{s, r\}=r .
$$

Thus $y \in \mathcal{B}_{r}(x)$, hence $\mathcal{B}_{r}(x)$ is contains its boundary and is closed.
(ii) Let $X \subseteq k$ be a subset with $x \neq y \in X$. Then for $r:=|x-y|>0$ we get

$$
X=\left(\overline{\mathcal{B}}_{\frac{r}{2}}(x) \cap X\right) \cup\left(X \backslash \overline{\mathcal{B}}_{\frac{r}{2}}(x)\right)
$$

which is a decomposition of X into two nonempty, disjoint open subset, i.e. the claim follows.

Example 9.12 (Geometry on $\left(\mathbb{Q},|\cdot|_{p}\right)$) The unit disc in $\left(\mathbb{Q},|\cdot|_{p}\right)$ is

$$
\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, p \nmid b\right\}=: \mathbb{Z}_{(p)}
$$

The maximal ideal is

$$
\left\{\frac{a}{b} \in \mathbb{Q}|p \nmid b, p| a\right\}=p \cdot \mathbb{Z}_{(p)}=\overline{\mathcal{B}}_{\frac{1}{p}}(0)
$$

We have

$$
\left\{x \in \mathbb{Q}\left||x|_{p}<1\right\}=\left\{\left.x \in \mathbb{Q}| | x\right|_{\infty}<\frac{1}{p}\right\}\right.
$$

Moreover

$$
\mathbb{Z}_{(p)} / p \mathbb{Z}_{(p)} \cong \mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}=\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}
$$

$\overline{\mathcal{B}}_{1}(0)$ is the disjoint union of the $\overline{\mathcal{B}}_{\frac{1}{p}}(i)$ for $0 \leqslant i \leqslant p-1$, where $\overline{\mathcal{B}}_{\frac{1}{p}}(i)=i+p \mathbb{Z}_{(p)}$.

§ 10 Completions, p-adic numbers and Hensel's Lemma

Remark 10.1 Let $|\cdot|$ be an absolute value on a field k. Let

$$
\mathcal{C}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \mid\left(a_{n}\right) \text { is Cauchy sequence in }(k,|\cdot|)\right\}
$$

be th ring (!) of Cauchy sequences in k and

$$
\mathcal{N}:=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \mid \lim _{n \rightarrow \infty} a_{n}=0\right\} \sharp \mathcal{C}
$$

the ideal (!) of Cauchy sequences converging to 0. Then
(i) \mathcal{N} is a maximal ideal.
(ii) $k^{\prime}:=\mathcal{C} / \mathcal{N}$ is a field extension of k.
(iii) $\mid \overline{\left(a_{n}\right)_{n \in \mathbb{N}} \mid}:=\lim _{n \rightarrow \infty}\left(a_{n}\right) \in \mathbb{R}_{\geqslant 0}$ is an absolute value on k^{\prime} extending $|\cdot|$.
(iv) k^{\prime} is complete with respect to $|\cdot|$.

Remark 10.2 If $|\cdot|$ is nonarchimedean, for every Cauchy sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \notin \mathcal{N}$ we have $\left|a_{m}\right|=$ $\left|a_{n}\right|$ for all $m, n \gg 0$.
proof. Since $\left(a_{n}\right) \notin \mathcal{N}, 0$ is not an accumulation point of $\left(a_{n}\right) . \Longrightarrow\left|a_{n}\right| \geqslant \epsilon$ for some $\epsilon>0$ and all $n \geqslant n_{0}(\epsilon)=: n_{0}$. Thus for $n, m \geqslant n_{0}$ we have $\left|a_{n}-a_{m}\right|<\epsilon$. This implies by 9.8 (ii)

$$
\left|a_{n}-a_{m}\right| \lessgtr \max \left\{\left|a_{n}\right|,\left|a_{m}\right|\right\} \Longrightarrow\left|a_{n}\right|=\left|a_{m}\right|,
$$

which was the claim.

Definition 10.3 Let $k=\mathbb{Q},|\cdot|=|\cdot|_{p}$ for some $p \in \mathbb{P}$. Then the field k^{\prime} on 10.1 is called the field of p-adic numbers and denoted by \mathbb{Q}_{p}. The valuation ring is called the ring of p-adic integers and is denoted by \mathbb{Z}_{p}.

Remark $10.4 \quad$ (i) $\mathbb{Z} \subset \mathbb{Z}_{(p)} \subset \mathbb{Z}_{p}$.
(ii) The maximal ideal in \mathbb{Z}_{p} is $p \mathbb{Z}_{p}$.
(iii) $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong \mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$.
(iv) \mathbb{Z}_{p} is a discrete valuation ring.
proof. (i) The first inclusion is clear. For the second one consider $x=\frac{r}{s} \in \mathbb{Z}_{(p)}$. Then by definition of localization we have $p \nmid s$ and hence

$$
|x|=\left|\frac{r}{s}\right|=\frac{|r|}{|s|}=|r| \leqslant 1
$$

and thus $x \in \mathbb{Z}_{p}$. Now prove that \mathbb{Z} is dence in \mathbb{Z}_{p} : Let $x \in \mathbb{Z}_{p}$ with p-adic expansion

$$
x=\sum_{i=0}^{\infty} a_{i} p^{i}, \quad a_{i} \in\{0,1, \ldots, p-1\} .
$$

Define a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ by

$$
x_{n}:=\sum_{i=0}^{n} a_{i} p^{i} \in \mathbb{Z} .
$$

Then we have

$$
\left|x-x_{n}\right|=\left|\sum_{i=n+1}^{\infty}\right|=\max _{i \geqslant n+1}\left\{\left|p^{i}\right|\right\}=\left|p^{n+1}\right|=p^{-(n+1)} \xrightarrow{n \rightarrow \infty} 0
$$

and hence \mathbb{Z} is dence in \mathbb{Z}_{p}.
(ii) Recall that the maximal ideal is given by

$$
\mathfrak{m}=\left\{x \in \mathbb{Z}_{p}| | x \mid<1\right\} \stackrel{!}{=} p \mathbb{Z}_{p}
$$

' \subseteq ' Let $x \in \mathfrak{m}$, i.e. $|x|<1$. Thus we have $|x|<\left|\frac{1}{p}\right|$. This implies

$$
\left|p^{-1} x\right| \leqslant 1 \Longleftrightarrow p^{-1} x \in \mathbb{Z}_{p} .
$$

and thus $p^{-1} x=y$ for some $y \in \mathbb{Z}_{p}$. Then we have $x=p y \in p \mathbb{Z}_{p}$.
' \supseteq ' Let $x \in p \mathbb{Z}_{p}$, i.e. we can write $x=p y$ for some $y \in \mathbb{Z}_{p}$. Then $|x|=|p y|=|p||y|<1$ and hence $x \in \mathfrak{m}$.
(iii) Consider the surjective homomorphism

$$
\psi_{p}: \mathbb{Z}_{p} \longrightarrow \mathbb{Z} / p \mathbb{Z}, \quad x=\sum_{i=0}^{n} a_{i} p^{i} \mapsto a_{0}
$$

We have

$$
\operatorname{ker}\left(\psi_{p}\right)=\left\{x \in \mathbb{Z}_{p} \mid a_{0} \equiv 0 \quad \bmod p\right\}=p \mathbb{Z}_{p}
$$

thus we get $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong \mathbb{Z} / p \mathbb{Z}$ by homomorphism theorem.
(iv) The absolute value $|\cdot|=|\cdot|_{p}$ on \mathbb{Q}_{p} induces a discrete valuation ν on \mathbb{Q}_{p}^{\times}. With respect to this valuation we have

$$
\mathcal{O}_{\nu}=\left\{x \in \mathbb{Q}_{p} \mid \nu(x) \geqslant 0\right\} \cup\{0\}=\left\{x \in \mathbb{Q}_{p}| | x \mid \leqslant 1\right\}=\mathbb{Z}_{p},
$$

which finishes the proof.

Proposition 10.5 (i) Any $x \in \mathbb{Z}_{p}$ can uniquely be written in the form

$$
x=\sum_{i=0}^{\infty} a_{i} p^{i}, \quad a_{i} \in\{0,1, \ldots, p-1\} .
$$

(ii) Any $x \in \mathbb{Q}_{p}$ can uniquely be written in the form

$$
x=\sum_{i=-m}^{\infty} a_{i} p^{i}, \quad m \in \mathbb{Z}, a_{i} \in\{0,1, \ldots, p-1\}, a_{m} \neq 0 .
$$

proof. (i) We first obtain, that any series

$$
\sum_{i=0}^{\infty} a_{i} p^{i}, \quad a_{i} \in\{0, \ldots, p-1\}
$$

converges, since for $n>m$ we have

$$
\left|\sum_{i=0}^{n} a_{i} p^{i}-\sum_{i=0}^{m} a_{i} p^{i}\right|=\left|\sum_{i=n+1}^{m} a_{i} p^{i}\right|=\left|p^{m+1}\right| \underbrace{\left|\sum_{i=n+1}^{m} a_{i} p^{i-(m+1)}\right|}_{\leqslant 1} \leqslant\left|p^{m+1}\right| .
$$

uniqueness Let

$$
x=\sum_{i=0}^{\infty} a_{i} p^{i}=\sum_{i=0}^{\infty} b_{i} p^{i}, \quad a_{i}, b_{i} \in\{0,1, \ldots, p-1\}
$$

representations of $x \in \mathbb{Q}_{p}$. Assume them to be different and define $i_{o}:=\min \left\{i \in \mathbb{N}_{0} \mid\right.$ $\left.a_{i} \neq b_{i}\right\}$. Then
$0=\left|\sum_{i=0}^{\infty} a_{i} p^{i}-\sum_{i=0}^{\infty} b_{i} p^{i}\right|=|\underbrace{p^{i_{0}}\left(a_{i_{0}}-b_{i_{0}}\right)}_{=: A}+p^{i_{0}+1} \cdot \underbrace{\left(\sum_{i=i_{0}+1}^{\infty} a_{i} p^{i-\left(i_{0}+1\right)}-\sum_{i=i_{0}+1}^{\infty} b_{i} p^{i-\left(i_{0}+1\right)}\right)}_{=: B}|$.
We obtain $\nu_{p}(A)=p^{-i_{0}}$ and

$$
B \in \mathbb{Z}_{p}, \quad \nu_{p}\left(p^{i_{0}+1} \cdot B\right)=\nu_{p}\left(p^{i_{0}+1}\right) \underbrace{\nu_{p}(B)}_{\leqslant 1} \leqslant \nu_{p}\left(p^{i_{0}+1}\right)=p^{-\left(i_{0}+1\right)},
$$

so all in all

$$
0=\left|A+p^{i_{0}+1} \cdot B\right| \stackrel{9.8(i i)}{=} \max \left\{p^{-i_{0}}, p^{-\left(i_{0}+1\right)}\right\}=p^{-i_{0}} \text { 之. }
$$

existence Look at $\bar{x} \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}=\mathbb{F}_{p}$.
Let a_{0} be the representative of x in $\{0,1, \ldots, p-1\}$. Then we have

$$
\left|x-a_{0}\right|<1 \Leftrightarrow\left|x-a_{0}\right| \leqslant \frac{1}{p} .
$$

In the next step, let a_{1} be the representative of $\frac{1}{p}\left(x-a_{0}\right)$ in $\{0,1, \ldots, p-1\}$. Then

$$
\left|\frac{1}{p}\left(x-a_{0}\right)-a_{1}\right|=\left|\frac{1}{p}\right|\left|x-a_{0}-a_{1} p\right| \leqslant \frac{1}{p}
$$

and thus $\left|x-a_{0}-a_{1} p\right| \leqslant \frac{1}{p^{2}}$. Inductively we let a_{n} be the representative of

$$
\frac{1}{p^{n}}\left(x-a_{0}-a_{1} p-\ldots-a_{n-1} p^{n-1}\right)=\frac{1}{p^{n}}\left(x-\sum_{i=0}^{n-1} a_{i} p^{i}\right)
$$

in $\{0,1, \ldots, p-1\}$. Then we have

$$
\left|x-\sum_{i=0}^{n-1} a_{i} p^{i}\right| \leqslant \frac{1}{p^{n+1}} .
$$

and finally

$$
\lim _{n \rightarrow \infty}\left|x-\sum_{i=0}^{n-1} a_{i} p^{i}\right| \leqslant \lim _{n \rightarrow \infty} \frac{1}{p^{n+1}}=0 \Longrightarrow x=\sum_{i=0}^{\infty} a_{i} p^{i}
$$

(ii) If $|x|=p^{m}$ for some $m \in \mathbb{Z}$, we have

$$
\left|x \cdot p^{m}\right|=|d| \cdot\left|p^{m}\right|=p^{m} \cdot p^{-m}=1, \quad \text { i.e. } x \cdot p^{m} \in \mathbb{Z}_{p}^{\times}
$$

By part (i) we conclude

$$
x \cdot p^{m}=\sum_{i=0}^{\infty} a_{i} p^{i}, \quad a_{0} \neq 0 .
$$

Thus we have

$$
x=\frac{1}{p^{m}} \cdot x \cdot p^{m}=\frac{1}{p^{m}} \cdot \sum_{i=0}^{\infty} a_{i} p^{i}=\sum_{i=-m}^{\infty} a_{i+m} p^{i},
$$

which was the assertion.

Remark 10.6 What is -1 in \mathbb{Q}_{p} ? We have $a_{0}=p-1$, since $\overline{p-1}-\overline{(-a)}=\bar{p}=0$. a_{1} is the representative of $\frac{1}{p}(-1-(p-1))=-1$, i.e. $a_{1}=p-1$. a_{2} is the representative of $\frac{1}{p^{2}}(-1-(p-1)-(p-1) p)=-1$, i.e. $a_{2}=p-1$. Inductively we have $a_{n}=p-1$ for all $n \in \mathbb{N}_{0}$, so we get

$$
-1=\sum_{i=0}^{\infty} a_{i} p^{i}=\sum_{i=0}^{\infty}(p-1) p^{i}
$$

Moreover we obtain

$$
\sum_{i=0}^{\infty}(p-1) p^{i}=(p-1) \sum_{i=0}^{\infty} p^{i}=(p-1) \cdot \frac{1}{1-p}=\frac{p-1}{1-p}=-1 .
$$

Remark 10.7 Let

$$
x=\sum_{i=0}^{\infty} a_{i} p^{i}, \quad y=\sum_{i=0}^{\infty} b_{i} p^{i}
$$

p-adic integers. Then

$$
x+y=\sum_{i=0}^{\infty} c_{i} p^{i}
$$

with coefficients

$$
\begin{gathered}
c_{0}= \begin{cases}a_{0}+b_{0} & \text { if } a_{0}+b_{0}<p \\
a_{0}+b_{0}-p & \text { if } a_{0}+b_{0} \geqslant p\end{cases} \\
c_{1}= \begin{cases}a_{1}+b_{1} & \text { if } a_{0}+b_{0}<p \\
\text { and } a_{1}+b_{1}<p \\
a_{1}+b_{1}-p & \text { if } a_{0}+b_{0}<p \\
\text { and } a_{1}+b_{1} \geqslant p \\
a_{1}+b_{1}+1 & \text { if } a_{0}+b_{0} \geqslant p \text { and } a_{1}+b_{1}+1<p \\
a_{1}+b_{1}+1-p & \text { if } a_{0}+b_{0} \geqslant p \text { and } a_{1}+b_{1}+1 \geqslant p\end{cases}
\end{gathered}
$$

Inductively let

$$
\epsilon_{0}:=0, \quad \epsilon_{i}:=\left\{\begin{array}{ll}
0 & \text { if } a_{i}+b_{i}+\epsilon_{i-1}<p \\
1 & \text { if } a_{i}+b_{i}+\epsilon_{i-1} \geqslant p
\end{array} \quad \text { for } i \geqslant 1\right.
$$

Then we have

$$
c_{i}= \begin{cases}a_{i}+b_{i}+\epsilon_{i} & \text { if } a_{i}+b_{i}+\epsilon_{i}<p \\ a_{i}+b_{i}+\epsilon_{i}-p & \text { if } a_{i}+b_{i}+\epsilon_{i} \geqslant p\end{cases}
$$

Remark 10.8 (i) $\sqrt{p} \notin \mathbb{Q}_{p}$, since $|\sqrt{p}|=\sqrt{|p|}=\sqrt{\frac{1}{p}} \in\left(\frac{1}{p}, 1\right)$, which is not possible.
(ii) Let $a \in \mathbb{Z}_{p}^{\times}$with image $\bar{a} \in \mathbb{F}_{p}^{\times} \backslash \mathbb{F}_{p}^{\times^{2}}$, where

$$
\mathbb{F}_{p}^{\times^{2}}=\left\{x \in \mathbb{F}_{p} \mid \text { there exists } y \in \mathbb{F}_{p}: y^{2}=x\right\}
$$

denotes the set of squares. Then $\sqrt{a} \notin \mathbb{Q}_{p}$. Assume a is a aquare, i.e. $b^{2}=a$. Then

$$
|b|=\sqrt{|a|}=1 \quad \Rightarrow \quad b \in \mathbb{Z}_{p}^{\times}
$$

But then $\bar{b} \in \mathbb{F}_{p}$ satisfies $\bar{b}^{2} \equiv a$, which is a contradiction, since $a \notin \mathbb{F}_{p}^{\times^{2}}$.
(iii) Let now $\overline{\mathbb{Q}}_{p}$ be the algebraic closure of \mathbb{Q}_{p} with valuation ring $\overline{\mathbb{Z}}_{p}$ and maximal ideal $\overline{\mathfrak{m}}_{p}$. Then $\overline{\mathbb{Z}}_{p} / \overline{\mathfrak{m}}$ is algebraically closed. Moreover \mathbb{Q}_{p} is complete with respect to $|\cdot|_{p}$. The completion \mathbb{C}_{p} of $\overline{\mathbb{Q}}_{p}$ is complete and algebraically closed, but:
(1) $|\cdot|_{p}$ is not a discrete valuation.
(2) $\overline{\mathbb{Z}}_{p}$ is not a discrete valuation ring.
(3) $\overline{\mathfrak{m}}_{p}$ is not a principal ideal.

Theorem 10.9 (Hensel's Lemma) Let

$$
f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Z}_{p}[X], \quad \bar{f}=\sum_{i=0}^{n} \overline{a_{i}} X^{i} \in \mathbb{F}[X]
$$

where \bar{f} is the reduction of f in $\mathbb{F}[X]$. Suppose that $\bar{f}=f_{1} \cdot f_{2}$ with $f_{1}, f_{2} \in \mathbb{F}_{p}[X]$ relatively prime. Then there exist $g, h \in \mathbb{Z}_{p}[X]$, such that

$$
f=g \cdot h, \quad \bar{g}=f_{1}, \bar{h}=f_{2}, \quad \operatorname{deg}\left(f_{1}\right)=\operatorname{deg}(g)
$$

proof. Let $d:=\operatorname{deg}(f), m:=\operatorname{deg}\left(f_{1}\right)$. Then $\operatorname{deg}\left(f_{2}\right) \leqslant d-m$. Choose $g_{0}, h_{0} \in \mathbb{Z}_{p}[X]$ such that $\overline{g_{0}}=f_{1}, \overline{h_{0}}=f_{2}, \operatorname{deg}\left(g_{0}\right)=m, \operatorname{deg}\left(h_{0}\right)=d-m$. Strategy: Find $g_{1}=g_{0}+p c_{1}, h_{1}=h_{0}+p d_{1}$ with some $c_{1}, d_{1} \in \mathbb{Z}_{p}[X]$, such that

$$
f-g_{1} h_{1} \quad \in p^{2} \mathbb{Z}_{p}[X] .
$$

Therefore we have a

Claim (a) For $n \geqslant 1$ there exists $c_{n}, d_{n} \in \mathbb{Z}_{p}[X]$ with $\operatorname{deg}\left(c_{n}\right) \leqslant m, \operatorname{deg}\left(d_{n}\right) \leqslant d-m$ and

$$
f-g_{n} h_{n} \in p^{n+1} \mathbb{Z}_{p}[X], \quad \text { where } g_{n}=g_{n-1}+p^{n} c_{n}, \quad h_{n}=h_{n-1}+p^{n} d_{n}
$$

Assuming (a), write

$$
g_{n}=\sum_{i=0}^{m} g_{n, i} X^{i}, \quad h_{n}=\sum_{i=0}^{d-m} h_{n, i} X^{i} .
$$

By construction, the ($g_{n, i}$) converge to some $\alpha_{i} \in \mathbb{Z}_{p}$ and the ($h_{n, i}$) converge to some $\beta_{i} \in \mathbb{Z}_{p}$. Let

$$
g:=\sum_{i=0}^{m} \alpha_{i} X^{i}, \quad h:=\sum_{i=0}^{d-m} \beta_{i} X^{i} .
$$

Observe, that $\operatorname{deg}(g)=m, \operatorname{deg}(h)=d-m$. Obviously we have

$$
f=g \cdot h
$$

It remains to show the claim.
(a) c_{n}, d_{n} have to satisfy

$$
\begin{aligned}
f-g_{n} h_{n} & =f-\left(g_{n-1}+p^{n} c_{n}\right) \cdot\left(h_{n-1}+p^{n} d_{n}\right) \\
& =f-g_{n-1} h_{n-1}-p^{n} \cdot\left(g_{n-1} d_{n}+h_{n-1} c_{n}+p^{n} c_{n} d_{n}\right) \\
& \vdots \\
& p^{n+1} \mathbb{Z}_{p}[X]
\end{aligned}
$$

where $f-g_{n-1} h_{n-1} \in p^{n} \mathbb{Z}_{p}[X]$ by hypothesis. We get

$$
\tilde{f}_{n}:=\frac{1}{p^{n}}\left(f-g_{n-1} h_{n-1}\right) \equiv c_{n} h_{n-1}+d_{n} g_{n-1} \quad \bmod p(*)
$$

Since f_{1}, f_{2} are relatively prime and $g_{j} \equiv g_{k} \bmod p$ for any j, k, we find integers $a, b \in \mathbb{Z}$, such that

$$
a f_{1}, b f_{2}=1 \quad \Longrightarrow \quad a g_{n-1}+b h_{n-1} \equiv 1 \quad \bmod p
$$

Multiplying the equation by \tilde{f}_{n} gives us

$$
\tilde{f}_{n} \equiv \underbrace{a \tilde{f}_{n}}_{=: \tilde{d}_{n}} g_{n-1}+\underbrace{b \tilde{f}_{n}}_{=: \tilde{c}_{n}} h_{n-1} \quad \bmod p(* *) .
$$

Further $\mathbb{Z}_{p}[X]$ is euclidean, thus we can choose $q_{n}, r_{n} \in \mathbb{Z}_{p}[X], \operatorname{deg}\left(r_{n}\right)<m$ such that

$$
b \tilde{f}_{n}=q_{n} g_{n-1}+r_{n} .
$$

By (**) we have

$$
g_{n-1}\left(a \tilde{f}_{n}+q_{n} h_{n-1}\right)+r_{n} \equiv \tilde{f}_{n} \quad \bmod p
$$

Let now $c_{n}=r_{n}, d_{n}=a \tilde{f}_{n}+q_{n} h_{n-1}$. All the terms are divisible by p. Then

$$
d_{n} \equiv a \tilde{f}_{n}+q_{n} h_{n-1} \quad \bmod p .
$$

Thus (*) holds and we have

$$
\operatorname{deg}\left(d_{n}\right)=\operatorname{deg}\left(\overline{d_{n}}\right) \leqslant \operatorname{deg}(\overbrace{\underbrace{\leqslant d}_{\tilde{f}_{n}}-\overbrace{\bar{c}_{n}}^{<m} \overbrace{\bar{h}_{n-1}}^{<d-m}}^{\leqslant d})-\underbrace{\operatorname{deg}\left(\bar{g}_{n-1}\right)}_{=m} \leqslant d-m
$$

since $\bar{d}_{n} \bar{g}_{n-1}=\overline{\tilde{f}}_{n}-\bar{c}_{n} \bar{h}_{n-1}$. Thus, the claim is proved.
Corollary 10.10 Let $p \in \mathbb{P}$ odd. Then $a \in \mathbb{Z}_{p}^{\times}$is a square if and only if $\bar{a} \in \mathbb{F}_{p}^{\times}$is a square.
Proposition $10.11 a \in \mathbb{Q}$ is a square if and only if $a>0$ and a is a square in \mathbb{Q}_{p} for all $p \in \mathbb{P}$. Remark: This is a special case of the 'Hasse-Minkowski-Theorem'.

Kapitel III

Rings and modules

§ 11 Multilinear Algebra

In this section, R will always be a commutative, unitary ring.
Reminder 11.1 (i) An R-module is an abelian group $(M,+)$ together with a scalar multiplication

$$
\cdot: R \times M \longrightarrow M
$$

with the usual properties of a vector space, i.e. for any $m, n \in M, r, s \in R$ we have
(1) $r \cdot(s \cdot m)=(r s) \cdot m$
(2) $(r+s) \cdot m=r \cdot m+s \cdot m$
(3) $r \cdot(m+n)=r \cdot m+r \cdot n$
(4) $1_{R} \cdot m=m$
(ii) A map $\phi: M \longrightarrow M^{\prime}$ of R-modules M, M^{\prime} is called R-linear or R-module homomorphism, if

$$
\phi(r \cdot m+s \cdot n)=r \cdot \phi(m)+s \cdot \phi(n) \quad \text { for all } r, s \in R, m, n \in M .
$$

(iii) A subset $S \subseteq M$ of an R-module is called an R-submodule of M, if S is an R-module.
(iv) R itself is an R-module, the submodules are the ideals of R.
(v) If $\phi: M \longrightarrow M^{\prime}$ is R-linear, then

$$
\begin{gathered}
\operatorname{ker}(\phi)=\{m \in M \mid \phi(m)=0\} \\
\operatorname{im}(\phi)=\left\{m^{\prime} \in M^{\prime} \mid \phi(m)=m^{\prime} \text { for some } m \in M\right\}
\end{gathered}
$$

are R-submodules.
(vi) If $M \subseteq M^{\prime}$ is a submodule, then the factor group M / M^{\prime} is an R-module via

$$
a \cdot \bar{m}=\overline{a \cdot m} .
$$

(vii) For an R-linear map $\phi: M \longrightarrow M^{\prime \prime}$, we have

$$
\operatorname{im}(\phi) \cong M / \operatorname{ker}(\phi)
$$

(viii) An R-module M is called free, if there exists a subset $X \subseteq M$, such that every $m \in M$ has a unique representation

$$
m=\sum_{x \in X} a_{x} \cdot x, \quad a_{x} \in R, \quad a_{x} \neq 0 \text { only for finitely many } x \in X .
$$

In this case, X is called the rank of M.
(ix) Not every R-module is free: Indeed let $0 \leftrightarrows I \leftrightarrows R$ be a proper ideal. Then R / I is not free: Let $X \subseteq R$, such that $\bar{X} \subseteq R / I$ generates the R-module R / I. Let $x \in X$ and $a \in I \backslash\{0\}$. Then we have

$$
x \cdot \bar{x}=\overline{a \cdot x}=\overline{0}=\overline{0 \cdot x}=0 \cdot \bar{x},
$$

hence we have found two different reapersentations of 0 . Thus R / I is not free.
(x) For any $n \in \mathbb{N}, n \mathbb{Z}$ is a free module
(xi) If $I \leqslant R$ is not a principle ideal, then I is not a free R-module., since for $x, y \in I$ with $y \notin(x)$ we have $x y-y x=0$. Again we have a nontrivial representation of 0 and I is not free.

Definition + proposition 11.2 Let R be a ring, $M, M^{\prime} R$-modules.
(i) The set of R-module homomorphisms

$$
\operatorname{Hom}_{R}\left(M, M^{\prime}\right)=\left\{\phi: M \longrightarrow M^{\prime} \mid \phi \text { is } R \text {-linear }\right\}
$$

is again an R-module.
(ii) $M^{*}=\operatorname{Hom}_{R}(M, R)$ is called the dual module of M .

Let now

$$
0 \longrightarrow M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime} \longrightarrow 0
$$

be a short exact sequence of R-modules $M, M^{\prime}, M^{\prime \prime}$, i.e. α is injective and β is surjective.
(iii) Then we have a short exact sequence

$$
\begin{aligned}
0 \longrightarrow \operatorname{Hom}_{R}\left(N, M^{\prime}\right) & \xrightarrow{\alpha_{*}} \\
\phi & \operatorname{Hom}_{R}(N, M)
\end{aligned} \begin{array}{rll}
\beta_{*} & \operatorname{Hom}_{R}\left(N, M^{\prime \prime}\right) \\
\phi & \omega \circ \phi, \quad \psi & \mapsto \\
\beta \circ \psi
\end{array}
$$

(iv) We have s short exact sequence

$$
\left.\begin{array}{rl}
0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, N\right) & \xrightarrow{\beta^{*}} \operatorname{Hom}_{R}(M, N) \\
\phi & \xrightarrow{\alpha^{*}} \\
\operatorname{Hom}_{R}\left(M^{\prime}, N\right) \\
& \phi \circ \beta, \quad \psi
\end{array}\right) \quad \psi \circ \alpha
$$

(v) N is called a projective module, if β_{*} is surjective for all short exact sequences as in (iii).
(vi) N is called an injective module, if α^{*} is surjective for all short exact sequences an in (iv).
proof. (i) This is clear: For all $\phi, \phi_{1}, \phi_{2} \in \operatorname{Hom}_{R}\left(M, M^{\prime}\right)$ and $a \in R$ we have

$$
\left(\phi_{1}+\phi_{2}\right)(x)=\phi_{1}(x)+\phi_{2}(x), \quad(a \cdot \phi)(x)=a \cdot \phi(x)
$$

(iii) α_{*} is R-linear: For any $\phi_{1}, \phi_{2} \in \operatorname{Hom}_{R}\left(N, M^{\prime}\right)$ and $x \in N$ we have

$$
\alpha_{*}\left(\phi_{1}+\phi_{2}\right)(x)=\left(\alpha \circ\left(\phi_{1}+\phi_{2}\right)\right)(x)=\alpha\left(\phi_{1}(x)+\phi_{2}(x)\right)=\alpha\left(\phi_{1}(x)\right)+\alpha\left(\phi_{2}(x)\right)
$$

and thus

$$
\alpha_{*}\left(\phi_{1}+\phi_{2}\right)(x)=\alpha_{*}\left(\phi_{1}\right)(x)+\alpha_{*}\left(\phi_{2}\right)(x)=\left(\alpha_{*}\left(\phi_{1}\right)+\alpha_{*}\left(\phi_{2}\right)\right)(x) .
$$

Moreover, α_{*} is injective: Since α is injective we have $\alpha_{*}(\phi)(x)=\alpha(\phi(x))=0$ if and only if $\phi(x)=0$ for all $x \in N$, thus $\phi=0$. Now we still have to show $\operatorname{ker}\left(\beta_{*}\right)=\operatorname{im}\left(\alpha_{*}\right)$.
${ }^{\prime} \supseteq$ ' For $\phi \in \operatorname{Hom}_{R}\left(N, M^{\prime}\right)$ we have $\beta_{*}(\alpha \circ \phi)=\beta \circ \alpha \circ \phi=0 \circ \phi=0$, i.e. $\alpha \circ \phi=\alpha_{*}(\phi) \in$ $\operatorname{ker}\left(\beta_{*}\right)$.
${ }^{\prime} \subseteq$ ' Let $\phi: N \longrightarrow M, \phi \in \operatorname{ker}\left(\beta_{*}\right)$, i.e. $\beta \circ \phi=0$. We have to show, that there exists $\phi^{\prime} \in$ $\operatorname{Hom}_{R}\left(N, M^{\prime}\right)$ such that $\phi=\alpha_{*}\left(\phi^{\prime}\right)=\alpha \circ \phi^{\prime}$. Let $x \in N$. Then $\phi(x) \in \operatorname{ker}(\beta)=\operatorname{im}(\alpha)$. Then there exists $z \in M^{\prime}$ such that $\phi(x)=\alpha(z)$ and z is unique, since α is injective. Define $\phi^{\prime}(x):=z$. Then we have $\alpha \circ \phi^{\prime}=\phi$. It remains to show that ϕ^{\prime} is R-linear. We have $\phi^{\prime}\left(x_{1}+x_{2}\right)=z$ and with $\alpha(z)=\phi\left(x_{1}+x_{2}\right)=\phi\left(x_{1}\right)+\phi\left(x_{2}\right)$ we again have $\alpha(z)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)$ for some suitable, but unique $z_{1}, z_{2} \in M^{\prime}$. Since we have

$$
\alpha(z)=\phi\left(x_{1}+x_{2}\right)=\phi\left(x_{1}\right)+\phi\left(x_{2}\right)=\alpha\left(z_{1}\right)+\alpha\left(z_{2}\right)=\alpha\left(z_{1}+z_{2}\right)
$$

and α is injective, we have $z=z_{1}+z_{2}$, thus

$$
\phi^{\prime}\left(x_{1}+x_{2}\right)=z=z_{1}+z_{2}=\phi^{\prime}\left(x_{1}\right)+\phi^{\prime}\left(x_{2}\right) .
$$

Moreover for $a \in R$ we have $\phi^{\prime}(a x)=w$ with $\alpha(w)=\phi(a x)=a \cdot \phi(x)=a \cdot \alpha(z)$. Thus $\alpha\left(\phi^{\prime}(a x)\right)=\alpha(w)=\phi(a x)=a \cdot \phi(x)=a \cdot \alpha(z)=a \cdot \alpha\left(\phi^{\prime}(x)\right) \stackrel{\alpha \text { inj. }}{\Longrightarrow} \phi^{\prime}(a x)=a \cdot \phi^{\prime}(x)$, which proves the claim.

Remark 11.3 (i) An R-module N is projective if and only if for every surjective R-linear map $\beta: M \longrightarrow M^{\prime \prime}$ and every R-linear map $\phi: N \longrightarrow M^{\prime \prime}$ there is an R-linear map
$\tilde{\phi}: N \longrightarrow M$, such that the diagram below commutes, i.e. $\phi=\beta \circ \tilde{\phi}$.

(ii) Free modules are projective.

Definition 11.4 Let M, M_{1}, M_{2} be R-modules. A map

$$
\Phi: M_{1} \times M_{2} \longrightarrow M
$$

is called bilinear, if the maps

$$
\Phi_{x_{0}}: M_{2} \longrightarrow M, \quad y \mapsto \Phi\left(x_{0}, y\right), \quad \Phi_{y_{0}}: M_{1} \longrightarrow M, \quad x \mapsto \Phi\left(x, y_{0}\right)
$$

are linear for all $x_{0} \in M_{1}$ and $y_{0} \in M_{2}$.

Definition 11.5 Let M_{1}, M_{2} be R-modules. A tensor prodcut of M_{1} and M_{2} is an R-module T together with a bilinear map

$$
\tau: M_{1} \times M_{2} \longrightarrow T
$$

such that for every bilinear map $\Phi: M_{1} \times M_{2} \longrightarrow M$ for any R-module M there is a unique linear map $\phi: T \longrightarrow M$, such that the following diagram becomes commutative.

Remark 11.6 Let (T, τ) and $\left(T^{\prime}, \tau^{\prime}\right)$ be tensor products of R-modules M_{1} and M_{2}. Then there exists a unique isomorphism $h: T \longrightarrow T^{\prime}$, such that

$$
\tau^{\prime}=h \circ \tau
$$

proof. Consider

Existence and uniqueness of the linear maps g and h come from Definition 11.5. It remains to show, that $h \circ g=\mathrm{id}_{T^{\prime}}$ and $g \circ h=\mathrm{id}_{T}$.

In order to do this, consider the following diagramm.

We have $(g \circ h) \tau=g \circ(h \circ \tau)=g \circ \tau^{\prime}=\tau$. By the uniqueness we get $\mathrm{id}_{T}=g \circ h$. Analogously we get $\mathrm{id}_{T^{\prime}}=h \circ g$ which finishes the proof.

Corollary 11.7 The tensor product (T, τ) of R-modules M_{1}, M_{2} is unique up to isomorphism. The standard notation is

$$
T=M_{1} \otimes_{R} M_{2}, \quad \tau(x, y)=x \otimes y
$$

Example 11.8 Let M_{1}, M_{2} be free R-modules with bases $\left\{e_{i}\right\}_{i \in I},\left\{f_{j}\right\}_{j \in J}$. Let T be the free R-module with basis $\left\{g_{i j}\right\}_{(i, j) \in I \times J}$ and

$$
\tau: M_{1} \times M_{2} \longrightarrow T,\left(e_{i}, f_{j}\right) \mapsto g_{i j} \quad \text { for all }(i, j) \in I \times J
$$

i.e. for elements in M_{1}, M_{2} we have

$$
\tau\left(\sum_{i \in I} a_{i} e_{i}, \sum_{j \in J} b_{j} f_{j}\right)=\sum_{(i, j) \in I \times J} a_{i} b_{j} g_{i j}
$$

Then (T, τ) is the tensor product of M_{1}, M_{2}, since: Let $\Phi: M_{1} \times M_{2} \longrightarrow M$ be bilinear. Define

$$
\phi: T \longrightarrow M, g_{i j} \mapsto \Phi\left(e_{i}, f_{j}\right)
$$

Obviously ϕ is linear and satisfies $\Phi=\phi \circ \tau$. Now consider a special case and let $|I|=n,|J|=m$. Identify M_{1} via $\left(e_{1}, \ldots e_{n}\right)$ with R^{n} and M_{2} via $\left(f_{1}, \ldots f_{m}\right)$ with R^{m}. Then T is identified with $R^{n \times m}$ via

$$
g_{i j}=E_{i j}=\left(\begin{array}{ccccc}
0 & \ldots & 0 & \ldots & 0 \\
\vdots & & 1 & & \vdots \\
0 & \ldots & 0 & \ldots & 0
\end{array}\right)
$$

where the only nonzero entry is in the i-th row and j-th column. Then $\tau: R^{n} \times R^{m} \longrightarrow R^{n \times m}$ is given by

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \otimes\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} b_{1} & \ldots & a_{1} b_{m} \\
\vdots & & \vdots \\
a_{n} b_{1} & \ldots & a_{n} b_{m}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \cdot\left(\begin{array}{lll}
b_{1} & \ldots & b_{m}
\end{array}\right)
$$

where the last multiplication is the usual multiplication of matricees.

Theorem 11.9 For any two R-modules M_{1}, M_{2} there exists a tensor product $(T, \tau)=\left(M_{1} \otimes_{R}\right.$ $\left.M_{2}, \otimes\right)$.
proof. Let F be the free R-module with basis $M_{1} \times M_{2}$ and Q be the submodule generated by all the elements
$\left(x+x^{\prime}, y\right)-(x, y)-\left(x^{\prime}, y\right), \quad\left(x, y+y^{\prime}\right)-(x, y)-\left(x, y^{\prime}\right), \quad(a x, y)-a(x, y), \quad(x, a y)-a(x, y)$ for $a \in R, x, x^{\prime} \in M_{1}, y, y^{\prime} \in M_{2}$. Define

$$
T:=F / Q, \quad \tau: M_{1} \times M_{2} \longrightarrow T,(x, y) \mapsto \overline{(x, y)}
$$

Then by the construction of Q, τ is bilinear. Let now be M a further R-module and $\Phi: M_{1} \times$ $M_{2} \longrightarrow M$ a bilinear map. Define

$$
\tilde{\phi}: F \longrightarrow M, \quad(x, y) \mapsto \Phi(x, y)
$$

Clearly $\tilde{\phi}$ is linear. Moreover we have $Q \subseteq \operatorname{ker}(\phi)$, since Φ is bilinear. By the isomorphism theorem, $\tilde{\phi}$ factors to a linear map $\phi: T \longrightarrow M$ satisfying $\phi(\overline{(x, y)})=\Phi(x, y)$. The uniqueness of ϕ follows by the fact that T is generated by the $\overline{(x, y)}$ for $x \in M_{1}, y \in M_{2}$.

Example 11.10 We want to find out what is

$$
\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z}
$$

Let $\Phi: \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \longrightarrow A$ bilinear for some \mathbb{Z}-module A. Then we see

$$
\Phi(\overline{1}, \overline{1})=\Phi(\overline{3}, \overline{1})=\Phi(3 \cdot(\overline{1}, \overline{1}))=3 \cdot \Phi(\overline{1}, \overline{1})=\Phi(\overline{1}, \overline{3})=\Phi(\overline{1}, \overline{0})=0 \cdot \Phi(\overline{1}, \overline{1})=0
$$

Hence $\Phi=0$, since $(\overline{1}, \overline{1})$ generates $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. Thus $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z}=0$.

Proposition 11.11 For R-modules M, M_{1}, M_{2}, M_{3} we have the following properties.
(i) $M \otimes_{R} R \cong M$.
(ii) $M_{1} \otimes_{R} M_{2} \cong M_{2} \otimes_{R} M_{1}$.
(iii) $\left(M_{1} \otimes_{R} M_{2}\right) \otimes_{R} M_{3} \cong M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{2}\right)$.
proof. (i) Let $\tau: M \times R \longrightarrow M,(x, a) \mapsto a \cdot x$. Then τ is bilinear. We now can verify the universal property of the tensor product. Let N be an arbitrary R-module and $\Phi: M \times R \longrightarrow N$ be bilinear a bilinear map. Define

$$
\phi: M \longrightarrow N, \quad x \mapsto \Phi(x, 1)
$$

Then ϕ is R-linear: For $x, y \in M, \alpha \in R$ we have

$$
\begin{gathered}
\phi(\alpha \cdot x)=\Phi(\alpha \cdot x, 1)=\alpha \cdot \Phi(x, 1)=\alpha \cdot \phi(x) \\
\phi(x+y)=\Phi(x+y, 1)=\Phi(x, 1)+\Phi(y, 1)=\phi(x)+\phi(y)
\end{gathered}
$$

and thus

$$
\phi(\tau(x, a))=\phi(a \cdot x)=a \cdot \Phi(x, 1)=\Phi(x, a)
$$

(ii) The isomorphism

$$
M_{1} \times M_{2} \cong M_{2} \times M_{1}, \quad(x, y) \mapsto(y, x)
$$

induces an isomorphism $M_{1} \otimes_{R} M_{2} \cong M_{2} \otimes_{R} M_{1}$.
(iii) For fixed $z \in M_{3}$ define

$$
\Phi_{z}: M_{1} \times M_{2} \longrightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right), \quad(x, y) \mapsto x \otimes(y \otimes z)=\tau_{1(23)}\left(\tau_{23}(x, y)\right)
$$

Then Φ_{z} is bilinear and induces a linear map

$$
\phi_{z}: M_{1} \otimes_{R} M_{2} \longrightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right)
$$

Define

$$
\Psi:\left(M_{1} \otimes_{R} M_{2}\right) \times M_{3} \longrightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right), \quad(x \otimes y, z) \mapsto \phi_{z}(x \otimes y)
$$

Ψ is bilinear and induces a linear map

$$
\psi:\left(M_{1} \otimes_{R} M_{2}\right) \otimes_{R} M_{3} \longrightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right)
$$

Doing this again the other way round we find a linear map

$$
\tilde{\psi}: M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right) \longrightarrow\left(M_{1} \otimes_{R} M_{2}\right) \otimes_{R} M_{3}
$$

By the uniqueness we obtain as in Remark 11.6 that $\psi \circ \tilde{\psi}=\tilde{\psi} \circ \psi=$ id, hence the claim follows.

Definition + remark 11.12 Let $M, M_{1}, \ldots M_{n}$ be R-modules.
(i) A map

$$
\Phi: M_{1} \times \ldots \times M_{n}=\prod_{i=1}^{n} M_{i} \longrightarrow M
$$

is called multilinear, if for any $1 \leqslant i \leqslant n$ and all choices of $x_{j} \in M_{j}$ for $j \neq i$ the map

$$
\Phi_{i}: M_{i} \longrightarrow M, \quad x \mapsto \Phi\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right)
$$

is linear.
(ii) The map

$$
\tau_{M_{1}, \ldots M_{n}}: \prod_{i=1}^{n} M_{i} \longrightarrow \bigotimes_{i=1}^{n} M_{i}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} \otimes \ldots \otimes x_{n}
$$

is multilinear.
(iii) For every multilinear map

$$
\Phi: \prod_{i=1}^{n} M_{i} \longrightarrow M
$$

there exists a unique linear map

$$
\phi: \bigotimes_{i=1}^{n} M_{i} \longrightarrow M
$$

such that $\Phi=\phi \circ \tau_{M_{1}, \ldots M_{n}}$.

Definition 11.13 Let M, N be R-modules, $\Phi: M^{n}=\prod_{i=1}^{n} M \longrightarrow N$ a multilinear map.
(i) Φ is called symmetric, if for any $\sigma \in S_{n}$ we have

$$
\Phi\left(x_{1}, \ldots x_{n}\right)=\Phi\left(x_{\sigma(1)}, \ldots x_{\sigma(n)}\right) .
$$

(ii) Φ is called alternating, if

$$
x_{i}=x_{j} \text { for some } i \neq j \Longrightarrow \Phi\left(x_{1}, \ldots x_{n}\right)=0
$$

If $\operatorname{char}(R) \neq 2$, this is equivalent to

$$
\Phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=-\Phi\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right) .
$$

Proposition 11.14 Let M be an R-module, $n \geqslant 1$.
(i) There exists an R-module $S^{n}(M)$, called the n-th symmetric power of M and a symmetric multilinear map

$$
\sigma_{M}^{n}: M^{n} \longrightarrow S^{n}(M)
$$

such that for all symmetric, multilinear maps $\Phi: M^{n} \longrightarrow N$ for any R-module N there exists a unique linear map $\phi: S^{n}(M) \longrightarrow N$ satisfying $\Phi=\phi \circ \sigma_{M}^{n}$.
(ii) There exists an R-module $\Lambda^{n}(M)$, called the n-th exterior power of M and an alternating multilinear map

$$
\lambda_{M}^{n}: M^{n} \longrightarrow \Lambda^{n}(M)
$$

such that for all alternating, multilinear maps $\Phi: \Lambda^{n}(M) \longrightarrow N$ for any R-module N there exists a unique linear map $\phi: \Lambda^{n}(M) \longrightarrow N$ satisfying $\Phi=\phi \circ \lambda_{M}^{n}$.
proof. (i) Let $T^{n}(M)=M \otimes_{R} \ldots \otimes_{R} M$.
Let now $J_{n}(M)$ be the submodule of $T^{n}(M)$ generated by all elements

$$
\left(x_{1} \otimes \ldots \otimes x_{n}\right)-\left(x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(n)}\right), \quad x_{i} \in M, \sigma \in S_{n}
$$

Define

$$
S^{n}(M):=T^{n}(M) / J_{n}(M), \quad \sigma_{M}^{n}:=\operatorname{proj} \circ \tau_{\mathrm{M}, \ldots \mathrm{M}}
$$

Then σ_{M}^{n} is multilinear and symmetric by construction. Given a multilinear and symmetric $\operatorname{map} \Phi: M^{n} \longrightarrow N$, define ϕ as follows: Let $\tilde{\phi}: T^{n}(M) \longrightarrow N$ be the linear map induced by Φ and observe that $J_{n}(M) \subseteq \operatorname{ker}(\tilde{\phi})$. Hence $\tilde{\phi}$ factors to a linear map

$$
\phi: S^{n}(M)=S^{n}(M) / J_{n}(M) \longrightarrow N
$$

satisfying $\phi \circ \sigma_{M}^{n}=\Phi$.
(ii) Similarily let $I_{n}(M)$ be the submodule of $T^{n}(M)$ generated by all the elements

$$
x_{1} \otimes \ldots \otimes x_{n}, \quad x_{i} \in M \quad \text { with } x_{i}=x_{j} \quad \text { for some } i \neq j
$$

Analogously we define

$$
\Lambda^{n}(M):=T^{n}(M) / I_{n}(M), \quad \lambda_{M}^{n}:=\operatorname{proj} \circ \tau_{\mathrm{M}, \ldots, \mathrm{M}}
$$

and obtain the required properties.
Proposition 11.15 Let M be a free R-module of rank r and $\left\{e_{1}, \ldots, e_{r}\right\}$ a basis of M. Then $\Lambda^{n}(M)$ is a free R-module with basis

$$
\operatorname{proj}\left(\mathrm{e}_{\mathrm{i}_{1}} \otimes \ldots \otimes \mathrm{e}_{\mathrm{i}_{\mathrm{n}}}\right)=: \mathrm{e}_{\mathrm{i}_{1}} \wedge \ldots \wedge \mathrm{e}_{\mathrm{i}_{\mathrm{n}}}, \quad 1 \leqslant \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{n}} \leqslant \mathrm{r}
$$

In particular, $\Lambda^{n}(M)=0$ for $n>r$ and $\operatorname{rank}\left(\Lambda^{\mathrm{r}}(\mathrm{M})\right)=1$.
proof. By definition we have $e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}=0$ if $i_{k}=i_{j}$ for some $k \neq j$, hence we have $\Lambda^{n}(M)=0$ for $n>r$, as at least on of the e_{k} must appear twice.
generating: Clearly the $e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}, i_{k} \in\{1, \ldots, r\}$ generate $\Lambda^{n}(M)$. We have to show that we can leave out some of them. Obviously $e_{i_{\sigma(1)}} \wedge \ldots \wedge e_{i_{\sigma(n)}}$ is a multiple by ± 1 of $e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}$. Thus the $e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}$ with $1 \leqslant i_{1}<i_{2}<\ldots<i_{n} \leqslant r$ generate $\Lambda^{n}(M)$.
linear independence: Assume

$$
\begin{equation*}
\sum_{1 \leqslant i_{1}<\ldots<i_{n} \leqslant r} a_{i_{1}, \ldots, i_{n}} e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}=0 \tag{*}
\end{equation*}
$$

For fixed $j:=\left(j_{1}, \ldots j_{n}\right), 1 \leqslant j_{1}<\ldots<j_{n} \leqslant r$ choose $\sigma_{j} \in S_{r}$, such that $\sigma_{j}(k)=j_{k}$ for
$1 \leqslant k \leqslant n$. Then we obtain

$$
e_{i_{1}} \wedge \ldots \wedge e_{i_{n}} \wedge e_{\sigma_{j}(n+1)} \wedge \ldots \wedge e_{\sigma_{j}(r)}= \begin{cases} \pm e_{1} \wedge \ldots \wedge e_{r}, & \text { if } i_{k}=j_{k} \text { for all } k \\ 0 & \text { otherwise }\end{cases}
$$

By (*) we get

$$
0=\left(\sum_{1 \leqslant i_{1}<\ldots i_{n} \leqslant r} a_{i_{1}, \ldots, i_{n}} e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}\right) \wedge e_{\sigma_{j}(n+1)} \wedge \ldots \wedge e_{\sigma_{j}(r)}=a_{j} e_{j_{1}} \wedge \ldots \wedge e_{j_{r}}
$$

and thus $a_{j}=0$.
Example 11.16 Let $M=R^{n}$. Then $\Lambda^{k}(M)$ is the free R-module with basis

$$
e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}, \quad 1 \leqslant i_{1}<\ldots<i_{k} \leqslant n
$$

and we have $e_{1} \wedge e_{2}=-e_{2} \wedge e_{1}$. What is $\Lambda^{n}\left(R^{n}\right)=\Lambda^{n}(M)$? And what is λ_{k}^{M} ? First we obtain $\Lambda^{n}\left(R^{n}\right)=\left(e_{1} \wedge \ldots \wedge e_{n}\right) R \cong R$. Then

$$
M^{n}=\left(R^{n}\right)^{n}=R^{n \times n}, \quad\left(a_{1}, \ldots a_{n}\right)=A \in R^{n \times n}, \quad a_{i}=\left(\begin{array}{c}
a_{1 i} \\
\vdots \\
a_{n i}
\end{array}\right)=\sum_{j=1}^{n} a_{j i} e_{j} \in R^{n}=M .
$$

For λ_{n}^{M} we get

$$
\begin{aligned}
\lambda_{n}^{M}=\lambda_{n}^{R^{n}}=\lambda_{n}(A) & =\lambda_{n}\left(\sum_{j=1}^{n} a_{j 1} e_{j}, \ldots, \sum_{j=1}^{n} a_{j n} e_{j}\right) \\
& =\sum_{j=1}^{n} a_{j 1} e_{j} \wedge \ldots \wedge \sum_{j=1}^{n} a_{j n} e_{j} \\
& =\sum_{j=1}^{n} a_{j 1}\left(e_{1} \wedge \sum_{j=1}^{n} a_{j 2} e_{j} \wedge \ldots \wedge \sum_{j=1}^{n} a_{j n} e_{j}\right) \\
& =\sum_{j=1}^{n} a_{j 1} \ldots \sum_{j=1}^{n} a_{j n}\left(e_{1} \wedge \ldots \wedge e_{n}\right) \\
& =\sum_{\sigma \in S_{n}} a_{\sigma(1) 1} \ldots a_{\sigma(n) n} \cdot e_{1} \wedge \ldots \wedge e_{n} \cdot \operatorname{sgn}(\sigma) \\
& =\operatorname{det}(A) \cdot e_{1} \wedge \ldots \wedge e_{n}
\end{aligned}
$$

which is well-known tu us.
Definition 11.17 Let M be a R-module. Then we define

$$
T(M):=\bigoplus_{n=0}^{\infty} T^{n}(M), \quad T^{0}(M):=R, T(M):=M
$$

$$
\begin{array}{ll}
S(M):=\bigoplus_{n=0}^{\infty} S^{n}(M) . & S^{0}(M):=R, S(M):=M \\
\Lambda(M):=\bigoplus_{n=0}^{\infty} \Lambda^{n}(M), \quad \Lambda^{0}(M) ;=R, \Lambda(M):=M
\end{array}
$$

On $T(M)$ define a multiplication

$$
\begin{aligned}
\cdot: T^{n}(M) \times T^{m}(M) & \longrightarrow T^{n+m}(M) \\
\left(x_{1} \otimes \ldots \otimes x_{n}\right) \cdot\left(y_{1} \otimes \ldots \otimes y_{m}\right) & \mapsto \quad x_{1} \otimes \ldots \otimes x_{n} \otimes y_{1} \otimes \ldots \otimes y_{m}
\end{aligned}
$$

Similarly do it for $S(M)$ and $\Lambda(M)$. Then we have R-algebra-structures and feel free to define
(i) the tensor algebra $T(M)$,
(ii) the symmetric algebra $S(M)$
(iii) the exterior algebra $\Lambda(M)$.

Definition 11.18 Let R be an arbitrary ring.
(i) An R-algebra is a ring R^{\prime} together with a ring homomorphism $\alpha: R \longrightarrow R^{\prime}$. In particular R^{\prime} is an R-module. If α is injective, R^{\prime} / R is called a ring extension.
(ii) A homomorphism of R-algebras $R^{\prime}, R^{\prime \prime}$ is an R-linear map $\phi: R^{\prime} \longrightarrow R^{\prime \prime}$, which is a ring homomorphism.

Example 11.19 (i) $R\left[X_{1}, \ldots X_{N}\right]$ is an R-algebra for every $n \in \mathbb{N}$.
(ii) If R^{\prime} is an R-algebra and $I \preccurlyeq R^{\prime}$ an ideal, then R^{\prime} / I is an R-algebra.

Remark 11.20 Let R^{\prime} be an R-algebra, F a free R-module. Then $F^{\prime}:=F \otimes_{R} R^{\prime}$ is a free R^{\prime} module.
proof. Let $\left\{e_{i}\right\}_{i \in I}$ be basis of F. Let us show, that $\left\{e_{1} \otimes 1\right\}_{i \in I}$ is basis of F^{\prime} as an R-module, where F^{\prime} is an R^{\prime} module by

$$
b \cdot(x \otimes a):=x \otimes b \cdot a, \quad a, b \in R, x \in F
$$

Check the universal property of the free R^{\prime}-module with basis $\left\{e_{i} \otimes 1\right\}_{i \in I}$ for $F \otimes_{R} R^{\prime}$. Let M^{\prime} be an R-module and $f:\left\{e_{i} \otimes 1\right\}_{i \in I} \longrightarrow M^{\prime}$ be a map. We have to show: There exists an R^{\prime}-linear $\operatorname{map} \phi: F^{\prime} \longrightarrow M^{\prime}$ with $\phi\left(e_{i} \otimes 1\right)=f\left(e_{i} \otimes 1\right)$. Note that the $\left\{e_{i} \otimes 1\right\}$ generate F^{\prime} as an R^{\prime}-module, since $e_{i} \otimes a=a \cdot\left(e_{i} \otimes a\right)$ for $a \in R^{\prime}$. Let $\tilde{\phi}: F \longrightarrow M^{\prime}$ be the unique R-linear map satisfying $\tilde{\phi}\left(e_{i}\right)=f\left(e_{i} \otimes 1\right)$. Then define

$$
\phi: F \otimes_{R} R^{\prime} \longrightarrow M^{\prime}, \quad x \otimes a \mapsto a \cdot \tilde{\phi}(x) .
$$

Then ϕ is R^{\prime}-linear an we have

$$
\phi\left(e_{i} \otimes 1\right)=1 \cdot \tilde{\phi}\left(e_{i}\right)=\tilde{\phi}\left(e_{i}\right)=f\left(e_{i} \otimes 1\right)
$$

which gives us the desired structure of an R^{\prime}-module.

Proposition 11.21 Let R be a ring, $R^{\prime}, R^{\prime \prime}$ two R-algebras.
(i) $R^{\prime} \otimes_{R} R^{\prime \prime}$ is an R-algebra with multiplication

$$
\left(a_{1} \otimes b_{1}\right) \cdot\left(a_{2} \otimes b_{2}\right):=\left(a_{1} a_{2}\right) \otimes\left(b_{1} b_{2}\right)
$$

(ii) There are R-algebra homomorphisms

$$
\begin{aligned}
\sigma^{\prime}: R^{\prime} \longrightarrow R^{\prime} \otimes_{R} R^{\prime \prime}, & a \mapsto a \otimes 1 \\
\sigma^{\prime \prime}: R^{\prime \prime} \longrightarrow R^{\prime \prime} \otimes_{R} R^{\prime \prime}, & b \mapsto 1 \otimes b
\end{aligned}
$$

(iii) For any R-algebra A and R-algebra homomorphisms $\phi^{\prime}: R^{\prime} \longrightarrow A, \phi^{\prime \prime}: R^{\prime \prime} \longrightarrow A$, there is a unique R-algebra homomorphism

$$
\phi: R^{\prime} \otimes_{R} R^{\prime \prime} \longrightarrow A
$$

satisfying $\phi^{\prime}=\phi \circ \sigma^{\prime}$ and $\phi^{\prime \prime}=\phi \circ \sigma^{\prime \prime}$, i.e. making the following diagram commutative

proof. Defining

$$
\tilde{\phi}: R^{\prime} \times R^{\prime \prime} \longrightarrow A, \quad(x, y) \mapsto \phi^{\prime}(x) \cdot \phi^{\prime \prime}(y)
$$

gives us ϕ, which satisfies the required properties.

§ 12 Hilbert's basis theorem

Definition 12.1 Let R be a ring, M and R-module.
(i) M is called noetherian, if any ascending chain of submodules $M_{0} \subset M_{1} \subset \ldots$ becomes stationary.
(ii) R is called noetherian, if R is noetherian as an R-module, i.e. if every ascending chain of ideals becomes stationary.

Example 12.2 (i) Let k be a field. A k-vector space is noetherian if and only if $\operatorname{dim}(V)<\infty$.
(ii) \mathbb{Z} is noetherian.
(iii) Principle ideal domains are noetherian.

Proposition 12.3 Let

$$
0 \longrightarrow M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime} \longrightarrow 0
$$

be a short exact sequence. Then M is noetherian if and only if M^{\prime} and $M^{\prime \prime}$ are noetherian.
proof. \quad ' \Rightarrow ' Let M be noetherian. Let first $M_{0}^{\prime} \subset M_{1}^{\prime} \subset \ldots$ be an ascending chain of submodules in M^{\prime}. Then $\alpha\left(M_{0}^{\prime}\right) \subset \alpha\left(M_{1}^{\prime}\right) \subset \ldots$ is an ascending chain in M. Since M is noetherian, there exists some $n \in \mathbb{N}$, such that $\alpha\left(M_{i}^{\prime}\right)=\alpha\left(M_{n}^{\prime}\right)$ for all $i \geqslant n$. Since α is injective, we have $M_{i}^{\prime}=M_{n}^{\prime}$ for $i \geqslant n$, hence M^{\prime} is noetherian. Let now $M_{0}^{\prime \prime} \subset M_{1}^{\prime \prime} \subset \ldots$ be an ascending chain of submodules in $M^{\prime \prime}$. Then $\beta^{-1}\left(M_{0}\right)^{\prime \prime} \subset \beta^{-1}\left(M_{1}^{\prime \prime}\right) \subset \ldots$ is an ascending chain in M, hence becomes stationary. Since β is surjective, $\beta\left(\beta^{-1}\left(M_{i}^{\prime \prime}\right)\right)=M_{i}^{\prime \prime}$ and thus $M_{0}^{\prime \prime} \subset M_{1}^{\prime \prime} \subseteq \ldots$ becomes stationary.
${ }^{\prime} \Leftarrow$ Let $M_{0} \subset M_{1} \subset \ldots$ be an ascending chain in M. Let $M_{i}^{\prime}:=\alpha^{-1}\left(M_{i}\right) \cong M_{i} \cap M^{\prime}$ and $M_{i}^{\prime \prime}:=\beta\left(M_{i}\right)$. By assumption, there exists $n \in \mathbb{N}$, such that $M_{i}^{\prime}=M_{n}^{\prime}$ and $M_{i}^{\prime \prime}=M_{n}^{\prime \prime}$ for all $i \geqslant n$. Then for $i \geqslant n$ we have

Where γ is injective as an embedding. It remains to show that γ is surjective. Let $z \in M_{i}$. Since β is surjective, there exists $x \in M_{n}$, such that $\beta(x)=\beta(z)$. Then $\beta(\gamma(x)-z)=0 \Rightarrow$ $\gamma(x)-z=\alpha(y)$ for some $y \in M_{i}^{\prime}=M_{n}^{\prime}$. Let $\tilde{x}:=x-\alpha(y)$. Then

$$
\gamma(\tilde{x})=\gamma(x)-\gamma(\alpha(y))=\gamma(x)-\gamma(x)+z=z
$$

hence γ is surjective, thus bijective and we have $M_{i}=M_{n}$ for $i \geqslant n$.

Corollary 12.4 Let R be a noetherian ring.
(i) Any free R-module F of finite rank n is noetherian.
(ii) Any finitely generated R-module M is noetherian.
proof. (i) Prove this by induction on n.
$n=1$ Clear.
$n>1$ Let $e_{1}, \ldots e_{n}$ be a basis of F and le F^{\prime} be the submodule generated by $e_{1}, \ldots e_{n-1}$. Then F^{\prime} is free of rank $n-1$, thus noetherian by induction hypothesis. Moreover F / F^{\prime} is free with generator e_{n}. Thus we have a short exact sequence

$$
0 \longrightarrow F^{\prime} \longrightarrow F \longrightarrow F / F^{\prime} \longrightarrow 0
$$

with $F^{\prime}, F / F^{\prime}$ noetherian, hence by $12.2, F$ is noetherian.
(ii) If M is generated by $x_{1}, \ldots x_{n}$, there is a surjective, R-linear map $\phi: F \longrightarrow M$, sending the e_{i} to x_{i}, where F is the free R-module with basis $e_{1}, \ldots e_{n}$. Again by $12.2, M$ is noetherian which finishes the proof.

Proposition 12.5 For an R-module M the following statements are equivalent:
(i) M is noetherian.
(ii) Any nonempty family of submodules of M has a maximal element with respect to ' \subseteq '.
(iii) Every submodule of M is finitely generated.
proof. '(i) \Rightarrow (ii) ' Let $\mathcal{M} \neq \varnothing$ be a set of submodules of M. Let $M_{0} \in \mathcal{M}$. If M_{0} is not maximal, there is $M_{1} \in \mathcal{M}$ with $M_{0} \subsetneq M_{1}$. If M_{1} is not maximal, there is $M_{2} \in \mathcal{M}$ with $M_{1} \subsetneq M_{2}$. Since M is noetherian, we come to a maximal submodule M_{n} after finitely many step.
'(ii) \Rightarrow (iii)' Let $N \subseteq M$ be a submodule. Let \mathcal{M} be the set of finitely generated submodules of N. Since $(0) \in \mathcal{M}$, we have $\mathcal{M} \neq \varnothing$ and thus there exists a maximal element $N_{0} \in \mathcal{M}$. If $N_{0} \neq N$, let $x \in N \backslash N_{0}$ and $N^{\prime}:=N_{0}+(x)$ be the submodule generated by N_{0} and x. Then clearly $N^{\prime} \in \mathcal{M}$, which is a contradiction to the maximality of N_{0}. Hence $N_{0}=N$ and N is finitely generated.
'(iii) $\Rightarrow(\mathrm{i})$ ' Let $M_{0} \subseteq M_{1} \subseteq \ldots$ be an ascending chain of submodules in M. Let $N:=\bigcup_{n \in \mathbb{N}_{0}} M_{n}$. By assumption, N is finiteley generated, say by $x_{1}, \ldots x_{n}$. Then there exists $i_{0} \in \mathbb{N}$, such that $x_{k} \in M_{i_{0}}$ for all $1 \leqslant k \leqslant n$. Thus we have $M_{i}=M_{i_{0}}$ for $i \geqslant i_{0}$, i.e. th chain becomes stationary and M is noetherian.

Corollary $12.6 R$ is noetherian if and only if every ideal $I \lessgtr R$ can be generated by finitely many elements. In particular, every principle ideal domain is noetherian.
proof. Follows from Proposition 12.4.
Theorem 12.7 (Hilbert's basis theorem) If R is noetherian, $R[X]$ is also noetherian.
proof. Let $J \preccurlyeq R[X]$ be an ideal. Assume that J is not finitely generated. Let f_{1} be an element of $J \backslash\{0\}$ of minimal degree. Then $\left(f_{1}\right) \neq J$. Inductively let $J_{i}:=\left(f_{1}, \ldots f_{i}\right)$ and pick $f_{i+1} \in J \backslash J_{i}$ of minimal degree. Let a_{i} be the leading coefficient of f_{i}, i.e. we have

$$
f_{i}=a_{i} X^{\operatorname{deg}\left(f_{i}\right)}+\sum_{j=1}^{\operatorname{deg}\left(f_{i}\right)-1} b_{j} X^{j}
$$

The ideal $I \preccurlyeq R$ generated by the a_{i} for $i \in \mathbb{N}$, is finitely generated by assumption.
Then we find $n \in \mathbb{N}$ such that $a_{n+1} \in\left(a_{1}, \ldots, a_{n}\right)$, i.e. we have

$$
a_{n+1}=\sum_{i=1}^{n} \lambda_{i} a_{i}
$$

for suitable $\lambda_{i} \in R$. Let $d_{i}:=\operatorname{deg}\left(f_{i}\right)$. Note, that $d_{i+1} \geqslant d_{i}$ for all $1 \leqslant i \leqslant n$. Let now

$$
\rho:=\sum_{i=1}^{n} \lambda_{i} f_{i} X^{d_{n+1}-d_{i}} .
$$

Then the leading coefficient of ρ is

$$
a_{d_{n+1}}=\sum_{i=1}^{n} \lambda_{i} a_{i}
$$

Hence $\operatorname{deg}\left(\rho-f_{n+1}\right)<d_{n+1}, \rho-f_{n+1} \notin J_{n}$, since $\rho \in J_{n}$, so f_{n+1} would be in J_{n}. This contradicts the choice of f_{n+1}. Hence our assumption was false and J is finitely generated and by Corollary 12.5 $R[X]$ is noetherian.

Corollary 12.8 Let R be noetherian. Then
(i) $R\left[X_{1}, \ldots X_{n}\right]$ is noetherian for any $n \in \mathbb{N}$.
(ii) Any finitely generated R-algebra is noetherian.

§ 13 Integral ring extensions

Definition 13.1 Let R be ring, S an R-algebra.
(i) If $R \subseteq S, S / R$ is called a ring extension.
(ii) If $R \subseteq S, b \in S$ is called integral over S, if there exists a monic polynomial $f \in R[X] \backslash\{0\}$ such that $f(b)=0$.
(iii) S / R is called an integral ring extension, if every $b \in S$ is integral over R.

Example 13.2 (i) If $R=k$ is a field, then integral is equivalent to algebraic.
(ii) $\sqrt{2}$ is integral over \mathbb{Z}, since $f=X^{2}-2$ is monic with $f(\sqrt{2})=0$.
(iii) $\frac{1}{2}$ is not integral over \mathbb{Z}.

Assume $\frac{1}{2}$ is integral over \mathbb{Z}. Then there exists some monic $f \in R[X]$, such that $f\left(\frac{1}{2}\right)=0$, i.e. we have

$$
\left(\frac{1}{2}\right)^{n}+g\left(\frac{1}{2}\right)=0(*)
$$

for some $g \in \mathbb{Z}[X]$.Then $2^{n-1} \cdot g\left(\frac{1}{2}\right) \in \mathbb{Z}$. Multiplying $(*)$ by 2^{n-1} gives us

$$
2^{n-1} \cdot\left(\left(\frac{1}{2}\right)^{n}+g\left(\frac{1}{2}\right)\right)=0
$$

and hence

$$
\frac{1}{2}=-2^{n-1} \cdot g\left(\frac{1}{2}\right) \in \mathbb{Z}
$$

Thus $\frac{1}{2}$ is not integral over \mathbb{Z}. More generally, we easily see that any $q \in \mathbb{Q} \backslash \mathbb{Z}$ is not integral over \mathbb{Z}.

Lemma 13.3 Let S / R be a ring extension, $b \in S$. If $R[b]$ is contained in a subring $S^{\prime} \subseteq S$ which is finitely generated as an R-module, then b is integral over R.
proof. Let s_{1}, \ldots, s_{n} be generators of S^{\prime}. Since $b \cdot s_{i} \in S$ (we have $b \in R[b] \subseteq S$), we find $a_{i k} \in R$, such that

$$
\begin{equation*}
b \cdot s_{i}=\sum_{k=1}^{n} a_{i k} s_{k} \Longleftrightarrow 0=\sum_{k=1}^{n}\left(a_{i} k-\delta_{i k}\right) s_{k} \tag{*}
\end{equation*}
$$

Claim (a) Let A be the coefficient matrix of (*). Then $\operatorname{det}(A)=0$
Since the determinant is a monic polynomial in b of degree n with coefficients in R, b is integral over R. It remains to show the claim.
(a) Let $A^{\#}$ be the adjoint matrix

$$
A_{j i}^{\#}=\operatorname{det}\left(A_{i j} \cdot(-1)^{i+j}\right.
$$

where $A_{i j}$ is obtained from A by deleting the i-the row and j-th column. Recall

$$
A^{\#} A=\operatorname{det}(A) \cdot E_{n} .
$$

By (*) we have

$$
A \cdot\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right)=0
$$

hence we have

$$
A^{\#} \cdot A \cdot\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right)=0 \Longrightarrow \operatorname{det}(A) \cdot s_{i}=0 \quad \text { for all } 1 \leqslant i \leqslant n
$$

Since S^{\prime} is a subring of S, we have $1 \in S^{\prime}$, hence there exist $\lambda_{1}, \ldots, \lambda_{n} \in R$ with

$$
1=\sum_{i=1}^{n} \lambda_{i} s_{i}
$$

Finally

$$
\operatorname{det}(A)=\operatorname{det}(A) \cdot 1=\operatorname{det}(A) \cdot \sum_{i=1}^{n} \lambda_{i} s_{i}=\sum_{i=1}^{n} \operatorname{det}(A) \cdot \lambda_{i} \cdot s_{i}=0
$$

Proposition 13.4 Let S / R be a ring extension. Define

$$
\bar{R}:=\{b \in S \mid b \text { is integral over } R\} \supseteq R
$$

Then \bar{R} is a subring of S, called the integral closure of R in S.
proof. Let $b_{1}, b_{2} \in \bar{R}$. We have to show, that $b_{1} \pm b_{2} \in \bar{R}, b_{1} b_{2} \in \bar{R}$. Let $R\left[b_{1}\right]$ be the smallest subring of S containing R and b_{1}. Then R is finitely generated as an R-module by $1, b_{1}, b_{1}^{2}, \ldots, b_{1}^{n-1}$, where n denotes the degree of the 'minimal polynomial' of f. Thus $R\left[b_{1}, b_{2}\right]=\left(R\left[b_{1}\right]\right)\left[b_{2}\right]$ is also finitely generated as an $R\left[b_{1}\right]$-module. This implies, that $R\left[b_{1}, b_{2}\right]$ is also finitely generated as an R-module and by Lemma $13.2, R\left[b_{1}, b_{2}\right] / R$ is an integral ring extension. In particular, $b_{1} \pm b_{2}$ and $b_{1} b_{2}$ are integral over R.

Definition 13.5 Let S / R be a ring extension, \bar{R} the integral closure of R in S.
(i) R is called integrally closed in S, if $\bar{R}=R$.
(ii) Let R be an integral domain. The integral closure of R in $\operatorname{Quot}(R)$ is called the normalization of R. R is called normal, if it agrees with its normalization.

Proposition 13.6 Any factorial domain is normal.
proof. Let R be a domain and $x=\frac{a}{b} \in \operatorname{Quot}(R), a, b \in R, b \neq 0$ relatively prime. Suppose, x is integral over R, i.e. there exist $\alpha_{0}, \ldots, \alpha_{n-1} \in R$, such that

$$
x^{n}+\alpha_{n-1} x^{n-1}+\ldots+\alpha_{1} x+\alpha_{0}=0
$$

Multiplying by b^{n} gives us

$$
a^{n}+\alpha_{n-1} a^{n-1} b+\ldots+\alpha_{1} a b^{n-1}+\alpha_{0} b^{n}=0
$$

and hence

$$
a^{n}=b \cdot \underbrace{\left(-\alpha_{n-1} a^{n-1}-\ldots-\alpha_{1} a b^{n-2}-\alpha_{0} b^{n-1}\right)}_{\in R} \Longleftrightarrow b \mid a^{n}
$$

Since a and b are coprime, we have $b \in R^{\times}$. Thus $x=\frac{a}{b}=a b^{-1} \in R$ and R is normal.
Definition 13.7 Let R be a ring.
(i) For a prime ideal $\mathfrak{p} \leqslant R$ we define
$h t(\mathfrak{p}):=\sup \left\{n \in \mathbb{N}_{0} \mid\right.$ there exist prime ideals $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$, with $\mathfrak{p}_{n}=\mathfrak{p}$ and $\left.\mathfrak{p}_{0} \subsetneq \ldots \subsetneq \mathfrak{p}_{n}\right\}$
to be the height of \mathfrak{p}.
(ii) The Krull-dimension of R is

$$
\operatorname{dim}(R):=\operatorname{dim}_{\operatorname{Krull}}(R)=\sup \{h t(\mathfrak{p}) \mid \mathfrak{p} \leqslant R \text { prime }\}
$$

Example 13.8 (i) Since $(0) \subsetneq\left(X_{1}\right) \subsetneq\left(X_{1}, X_{2}\right) \subsetneq \ldots \subsetneq\left(X_{1}, \ldots, X_{n}\right)$, we have $\operatorname{dim}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \geqslant$ n.
(ii) $\operatorname{dim}(k)=0$ for any field k, since (0) is the only prime ideal.
(iii) $\operatorname{dim}(\mathbb{Z})=1$, since $(0) \subsetneq(p)$ is a maximal chain of prime ideals for $p \in \mathbb{P}$.
(iv) $\operatorname{dim}(R)=1$ for any principle ideal domain which is not a field:

Assume p, q are prime element with $(p) \subseteq(q)$. Then $p=q \cdot a$ for some $a \in R$. Since p is irreducible, we have $a \in R^{\times}$and hence $(p)=(q)$.
(v) $\operatorname{dim}(k[X])=1$ for any field k :

Theorem 13.9 (Going up theorem) Let S / R be an integral ring extension and

$$
\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \ldots \subsetneq \mathfrak{p}_{n}
$$

a chain of prime ideals in R. Then there exists a chain of prime ideals

$$
\mathfrak{P}_{0} \subsetneq \mathfrak{P}_{1} \subsetneq \ldots \subsetneq \mathfrak{P}_{n}
$$

in S, such that $\mathfrak{p}_{i}=\mathfrak{P}_{i} \cap R$.
proof. Do this by induction on n.
$\mathbf{n}=\mathbf{0}$ Let $\mathfrak{p} \triangleleft R$ be a prime ideal. We have to find a prime ideal $\mathfrak{P} \triangleleft S$ with $\mathfrak{P} \cap R=\mathfrak{p}$. Let

$$
\mathcal{P}:=\{I \triangleleft S \text { ideal } \mid I \cap R=\mathfrak{p}\}
$$

Claim (a) $\mathfrak{p} S \in \mathcal{P}$.
Then \mathcal{P} is nonempty. Zorn's lemma provides us then a maximal element $\mathfrak{m} \in \mathcal{P}$.
Claim (b) $\mathfrak{m} \triangleleft S$ is a prime ideal.
This proves the claim. It remains to show the Claims.
(b) Suppose $b_{1}, b_{2} \in S$ with $b_{1} b_{2} \in \mathfrak{m}$. Assume $b_{1}, b_{2} \in S \backslash \mathfrak{m}$.

Then $\mathfrak{m}+\left(b_{i}\right) \notin \mathcal{P}$, hence $\left(\mathfrak{m}+\left(b_{i}\right)\right) \supsetneq \mathfrak{p}$ for $i \in\{1,2\}$. \Longrightarrow Thus there exists $p_{i} \in$ $\mathfrak{m}, s_{i} \in S$ such that $r_{i}:=p_{i}+b_{i} s_{i} \in R \backslash \mathfrak{p}$. Then we have

$$
r_{1} r_{2}=\left(p_{1}+b_{1} s_{1}\right)\left(p_{2}+b_{2} s_{2}\right)=\underbrace{p_{1} p_{2}+p_{1} b_{2} s_{2}+b_{1} s_{1} p_{2}}_{\in \mathfrak{m}}+\underbrace{b_{1} b_{2}}_{\in \mathfrak{m} \text { by ass. }} s_{1} s_{2} \in \mathfrak{m}
$$

Clearly $r_{1} r_{2} \in R$, hence $r_{1} r_{2} \in \mathfrak{m} \cap R=\mathfrak{p}$, which is a contradiction, since \mathfrak{p} is prime.
(a) We have to show $\mathfrak{p} S \cap R=\mathfrak{p}$. We prove both inclusions.
' \supseteq ' This is clear by definition.
' \subseteq ' Let now

$$
b=\sum_{i=0}^{n} p_{i} t_{i}, \quad p_{\in} \mathfrak{p}, t_{i} \in S
$$

Since the t_{i} are integral over $R, R\left[t_{1}, \ldots t_{n}\right]=: S^{\prime}$ is finitely generated. Let
s_{1}, \ldots, s_{m} be generators of S^{\prime} as an R-module. Since $b \in \mathfrak{p} S^{\prime}$, we have

$$
b s_{i}=\sum_{k=0}^{m} a_{k i} s_{k}
$$

for suitable $a_{i k} \in \mathfrak{p}$. Then as in lemma 13.3 we have $\operatorname{det}\left(a_{i k}-\delta_{i k} b\right)=0$ and thus b is a zero of monic polynomial with coefficients in \mathfrak{p}, i.e. b satisfies an equation

$$
b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b+a_{0}=0 \quad \text { with } a_{i} \in \mathfrak{p}
$$

Write

$$
b^{n}=-\sum_{i=0}^{n-1} a_{i} b^{i} \in \mathfrak{p}
$$

since $b^{i} \in \mathfrak{p}$. Since \mathfrak{p} is prime, we must have $b \in \mathfrak{p}$ and hence the required inclusion.
$\mathbf{n}>\mathbf{1}$ By induction hypothesis we have a chain

$$
\mathfrak{P}_{0} \subsetneq \mathfrak{P}_{1} \subsetneq \ldots \subsetneq \mathfrak{P}_{n-1}
$$

satisfying $\mathfrak{P}_{i} \cap R=\mathfrak{p}_{i}$. Moreover we find $\mathfrak{P}_{n} \triangleleft S$ such that $\mathfrak{P}_{n} \cap R=\mathfrak{p}_{n}$. It remains to show $\mathfrak{P}_{n-1} \subsetneq \mathfrak{P}_{n}$. For $x \in \mathfrak{P}_{n-1}$ we have $x \in R \cap \mathfrak{p}_{n-1}$, i.e. $x \in \mathfrak{p}_{n-1} \subset \mathfrak{p}_{n}$. Thus $x \in \mathfrak{p}_{n} \cap R=\mathfrak{P}_{n}$. Assume now $\mathfrak{P}_{n-1}=\mathfrak{P}_{n}$. Let $x \in \mathfrak{p}_{n}$. Then

$$
x \in \mathfrak{p}_{n} \in \mathfrak{p}_{n} \cap R=\mathfrak{P}_{n}=\mathfrak{P}_{n-1}=\mathfrak{p}_{n-1} \cap R, \quad \Longrightarrow \quad x \in \mathfrak{p}_{n-1}
$$

and thus $\mathfrak{p}_{n} \subseteq \mathfrak{p}_{n-1}$, hence $\mathfrak{p}_{n}=\mathfrak{p}_{n-1}$, a contradiction.

Theorem 13.10 Let S / R be an integral ring extension. Then $\operatorname{dim}(R)=\operatorname{dim}(S)$.
proof. ' \leqslant ' Follows from Proposition 13.7
${ }^{\prime} \geqslant$ Let $\mathfrak{P}_{0} \subsetneq \mathfrak{P}_{1} \subsetneq \ldots \subsetneq \mathfrak{P}_{n}$ be chain of prime ideals in S and define $\mathfrak{p}_{i}:=\mathfrak{P}_{i} \cap R$.
Then \mathfrak{p}_{i} is prime and we have $\mathfrak{p}_{i} \subseteq \mathfrak{p}_{i+1}$. It remains to show, that $\mathfrak{p}_{i} \neq \mathfrak{p}_{i+1}$.
Define $S^{\prime}:=S / \mathfrak{P}_{i}$ and $R^{\prime}:=R / \mathfrak{p}_{i}$. Then S^{\prime} / R^{\prime} is integral (!).
We have to show that $\overline{\mathfrak{P}}_{i+1} \cap R=\overline{\mathfrak{p}}_{i+1}:=$ image of \mathfrak{p}_{i+1} in S^{\prime} is not (0).
Let $b \in \mathfrak{P}_{i+1} \backslash\{0\}$. Since b is integral over R^{\prime}, there exist $a_{0}, \ldots, a_{n-1} \in R$, such that

$$
b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b+a_{0}=0
$$

Let further n be minimal with this property. Write

$$
a_{0}=-b \cdot \underbrace{\left(a_{1}+a_{2} b+\ldots+a_{n-1} b^{n-2}+b^{n-1}\right)}_{=: c} \in \overline{\mathfrak{P}}_{i+1} \cap R=\overline{\mathfrak{p}}_{i+1}
$$

But $c \neq 0$ by the choice of n and $b \neq 0$. Since $R^{\prime}=R / \mathfrak{p}$ is an integral domain, we have $\overline{0} \neq a_{0} \in \overline{\mathfrak{p}}_{i+1}$ and thus $\overline{\mathfrak{p}}_{i+1} \neq(0)$, which proves the claim.

Theorem 13.11 (Noether normalization) Let k be a field. Then every finitely generated k algebra is an integral extension of a polynomial ring over $k[X]$.
proof. Let $a_{1}, \ldots a_{n}$ be generators of A as a k-algebra. Prove the theorem by induction.
$\mathbf{n}=\mathbf{1}$ If a_{1} is transcendental over k, then $A \cong k[X]$. Otherwise $A \cong k[X] /(f)$, where f denotes the minimal polynomial of a_{1} over k. Thus A is integral over k.
$\mathbf{n}>\mathbf{1}$ If $a_{1}, \ldots a_{n}$ are algebraically independent, $A \cong k\left[X_{1}, \ldots X_{n}\right]$. Otherwise there exists some polynomial
$F \in k\left[X_{1}, \ldots X_{n}\right] \backslash\{0\}$ such that $F\left(a_{1}, \ldots a_{n}\right)=0$.
case 1 Assume we have

$$
F=X_{n}^{m}+\sum_{i=1}^{m-1} g_{i} X_{n}^{i}
$$

with $g_{i} \in k\left[X_{1}, \ldots X_{n}\right]$. Then $F\left(a_{1}, \ldots a_{n}\right)=0$, hence a_{n} is integral over $A^{\prime}:=$ $k\left[a_{1}, \ldots, a_{n-1}\right]$. By induction hypothesis, A^{\prime} is integral over some polynomial ring, so is A.
case 2 For the general case write

$$
F=\sum_{i=0}^{m} F_{i}
$$

where F_{i} is homogenous of degree i, i.e. the sum of the exponents of any monomial in f_{i} is equal to i. Then replace a_{i} by $b_{i}:=a_{i}-\lambda a_{n}\left(^{*}\right)$ with suitable $\lambda_{i} \in k, 1 \leqslant i \leqslant n-1$. Then $A \cong k\left[b_{1}, \ldots, b_{n-1}, a_{n}\right]$. For any monomial $a_{1}^{d_{1}} \cdots a_{n}^{d_{n}}$ we find
$a_{1}^{d_{1}} \cdots a_{n}^{d_{n}}=\left(b_{1}+\lambda_{1} a_{n}\right)^{d_{1}} \cdots\left(b_{n-1}+\lambda_{n-1} a_{n}\right)^{d_{n-1}} \cdot a_{n}^{d_{n}}=\left(\prod_{i=1}^{n-1} \lambda_{i}^{d_{i}}\right) \cdot a_{n}^{\sum_{i=1}^{n} d_{i}}+\mathcal{O}\left(a_{n}\right)$
where $\mathcal{O}\left(a_{n}\right)$ denotes terms of lower degree in a_{n}. Then for $d:=\sum_{i=1}^{n} d_{i}$ we obtain

$$
F_{d}\left(a_{1}, \ldots a_{n}\right)=a_{n}^{d} \cdot F_{d}\left(\lambda_{1}, \ldots \lambda_{n-1}, 1\right)+\mathcal{O}\left(a_{n}\right)
$$

and thus

$$
F\left(a_{1}, \ldots, a_{n}\right)=a_{n}^{m} F_{m}\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right)+\mathcal{O}\left(a_{n}\right)
$$

Choose now $\lambda_{1}, \ldots, \lambda_{n-1} \in k$, such that $F_{m}\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right) \neq 0$. If k is infinite, this is always possible. In the finite case, go back to (*) and use $b_{i}:=a_{i}+a_{n}^{\mu_{i}}$ instead and repeat the procedure. Then by the first case and induction hypothesis the claim follows.

§ 14 Dedekind domains

Definition 14.1 A noetherian integral domain R of dimension 1 is called a Dedekind domain, if every nonzero ideal $I \triangleleft R$ has a unique representation as a product of prime ideals

$$
I=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}
$$

Definition + remark 14.2 Let R be a noetherian integral domain, $k:=\operatorname{Quot}(R)$ and $(0) \neq$ $I \subseteq k$ an R-module.
(i) I is called a fractional ideal, if there exists $a \in R \backslash\{0\}$, such that $a \cdot I \subseteq R$.
(ii) I is a fractional ideal if and only if I is finitely generated as an R-module.
(iii) For a fractional ideal I let

$$
I^{-1}:=\{x \in k \mid x \cdot I \subseteq R\}
$$

Then I^{-1} is a fractional ideal.
(iv) I is called invertible, if $I \cdot I^{-1}=R$, where $I \cdot I^{-1}$ denotes the R-module generated by all products $x \cdot y$ with $x \in I, y \in I^{-1}$.
proof. (ii) ' \Rightarrow ' If $a \cdot I \subseteq R$, then $a \cdot I$ is an ideal in R. since R is noetherian, $a \cdot I$ is finitely generated, say by x_{1}, \ldots, x_{n}. Then I is generated by $\frac{x_{1}}{a}, \ldots, \frac{x_{n}}{a}$.
$' \Leftarrow '$ Let y_{1}, \ldots, y_{m} be generators of I. Write $y_{i}=\frac{r_{i}}{a_{i}}$ with $r_{i}, a_{i} \in R \backslash 0$. Define

$$
a:=\prod_{i=1}^{n} a_{i}
$$

Then for any generator we have $a \cdot y_{i}=r \cdot a_{1} \cdot \ldots a_{i-1} \cdot a_{i+1} \cdot \ldots \cdot a_{m} \in R$, hence $a \cdot I \subseteq R$.

Example 14.3 Every principle ideal $I \neq(0)$ is invertible:
Let $I=(a) 太 R$. Then $I^{-1}=\frac{1}{a} R$, since we have

$$
I \cdot I^{-1}=(a) \cdot \frac{1}{a} R=a R \cdot \frac{1}{a} R=R
$$

Proposition 14.4 Let R be a Dedekind domain. Then every nonzero ideal $I \boxtimes R$ is invertible. proof. Let $(0) \neq I \triangleleft R$ be a proper ideal. Then by assumption we can write

$$
I=\mathfrak{p}_{1} \cdots \cdot \mathfrak{p}_{r}
$$

with prime ideal $\mathfrak{p}_{i} \triangleleft R$.
If each \mathfrak{p}_{i} is invertible, then we have

$$
I \cdot \mathfrak{p}_{r}^{-1} \cdots \mathfrak{p}_{1}^{-1}=R
$$

hence I is invertible. Thus we may assume that $I=\mathfrak{p}$ is prime. Let $a \in \mathfrak{p} \backslash\{0\}$ and write

$$
(a)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{m}
$$

with prime ideals $\mathfrak{p}_{i} \triangleleft R$. Then $(a) \subseteq \mathfrak{p}$, i.e. $\mathfrak{p}_{i} \subseteq \mathfrak{p}$ for some $1 \leqslant i \leqslant m$, say $i=1$. Since the ideals were proper and $\operatorname{dim}(R)=1$, we have $\mathfrak{p}_{1}=\mathfrak{p}$ and $\mathfrak{p}^{-1}=\mathfrak{p}_{1}^{-1}=\frac{1}{a} \cdot \mathfrak{p}_{2} \cdots \mathfrak{p}_{m}$, since $\mathfrak{p}_{1} \mathfrak{p}_{1}^{-1}=\frac{1}{a}(a)=(1)=R$.

Corollary 14.5 The fractional ideals in a Dedekind domain R form a group.
proof. Let $(0) \neq I \subseteq k=\operatorname{Quot}(R)$ ba a fractional ideal. Choose $a \in R$ such that $a \cdot I \subseteq R$. By Proposition $14.3, a \cdot I$ is invertible, i.e. there exists a fractional ideal I^{\prime}, such that

$$
(a \cdot I) \cdot I^{\prime}=R \Longrightarrow I \cdot\left(a \cdot I^{\prime}\right)=R
$$

where R is neutral element of the group.

Proposition 14.6 Every Dedekind domain R is normal.
proof. Let $x \in k:=\operatorname{Quot}(\mathrm{R})$ be integral over R, i.e. we can write

$$
x^{n}+a_{n-1} X^{n-1}+\ldots a_{1} x+a_{0}=0, \quad a_{i} \in R
$$

By the proof of Proposition $13.3, R[x]$ is a finitely generated R-module, hence $R[x]$ is a fractional ideal by Remark 14.2. Further by Corollary $14.4 R[x]$ is invertible, i.e. we can find $I \lessgtr k$, such that $I \cdot R[x]=R$.
On the other hand $R[x]$ is a ring, i.e. $R[x] \cdot R[x]=R[x]$. Multiplying the equation by I gives us $x \in R$. In particular we have

$$
R=I \cdot R[x]=I \cdot(R[x] \cdot R[x])=(I \cdot R[x]) \cdot R[x]=R \cdot R[x]=R[x]
$$

which implies the claim.

Proposition 14.7 Let R be noetherian integral domain of dimension 1 . Then R is a Dedekind domain if and only if R is normal.
proof. $\quad \prime \Rightarrow$ ' This is Proposition 14.5
$' \Leftarrow$ ' We claim
claim (a) For every prime ideal $(0) \neq \mathfrak{p} \triangleleft R$ the localization $R_{\mathfrak{p}}$ is a discrete valuation ring.
claim (b) Every nonzero ideal in R is invertible.
Then let $(0) \neq I \neq R$ be an ideal in R. Then $I \subseteq \mathfrak{m}_{0}$ for a maximal ideal $\mathfrak{m}_{0} \triangleleft R$. By claim (b), \mathfrak{m}_{0} is invertble. Define $I_{1}:=\mathfrak{m}_{0}^{-1} \cdot I$. Then $I_{1} \subseteq \mathfrak{m}_{0}^{-1} \cdot \mathfrak{m}_{0}=R$ is an ideal. If $I_{1}=R$, then
$I=\mathfrak{m}_{0}$. Otherwise let \mathfrak{m}_{1} be a maximal ideal containing I_{1} and define $I_{2}:=\mathfrak{m}_{1}^{-1} \cdot I_{1} \leqslant R$. If $I_{1}=I$, then $\mathfrak{m}_{0}^{-1} \cdot I=I \stackrel{\text { invert. }}{\Longrightarrow} \mathfrak{m}_{0}^{-1}=R$, which is a contradiciton.
By this way we obtain a chain of ideals

$$
I \subsetneq I_{1} \subsetneq I_{2} \subsetneq \ldots \subsetneq I_{n}
$$

Since R is noetherian, there exists $n \in \mathbb{N}$; such that $I_{n}=R$. Then

$$
R=I_{n}=\mathfrak{m}_{n-1}^{-1} \cdot I_{n-1}=\mathfrak{m}_{n-1}^{-1} \cdot \mathfrak{m}_{n-1}^{-1} \cdot I_{n-2}=\mathfrak{m}_{n-1}^{-1} \cdots \mathfrak{m}_{0}^{-1} \cdot I
$$

Thus

$$
I=\mathfrak{m}_{0} \cdot \mathfrak{m}_{1} \cdots \mathfrak{m}_{n-2} \cdot \mathfrak{m}_{n-1}
$$

with maximal, thus prime ideals \mathfrak{m}_{i}. Hence R is a Dedekind domain.
It remains to show the claims.
(b) Let $(0) \neq I 太 R$ be an ideal. We have to show $I \cdot I^{-1}=R$ for $I^{-1}=\{x \in k \mid x \cdot I \subseteq R\}$. $' \subseteq$ ' Clear.
' \supseteq ' Assume $I \cdot I^{-1} \neq R$. Then there exists a maximal ideal $\mathfrak{m} \triangleleft R$ such that $I \cdot I^{-1} \subseteq \mathfrak{m}$. By claim (a), $R_{\mathfrak{m}}$ is a principal ideal domain, thus $I \cdot R_{\mathfrak{m}}$ is generated by one element, say $\frac{a}{s}$ for some $a \in I, s \in R \backslash \mathfrak{m}$. Let now b_{1}, \ldots, b_{n} be generators of I as an ideal in R. Then

$$
\frac{b_{i}}{1}=\frac{a}{s} \cdot \frac{r_{i}}{s_{i}}, \quad r_{i} \in R, s_{i} \in R \backslash \mathfrak{m}, \quad \text { for } 1 \leqslant i \leqslant n
$$

Define $t:=s \cdot s_{1} \cdots s_{n} \in R \backslash \mathfrak{m}$.
We have $\frac{t}{a} \in I^{-1}$, since

$$
\frac{t}{a} \cdot b_{i}=\frac{t}{a} \cdot \frac{a}{s} \cdot \frac{r_{i}}{s_{i}}=r_{i} \cdot s_{1} \cdots s_{i-1} \cdot s_{i+1} \cdots s_{n} \in R
$$

for $1 \leqslant i \leqslant n$. But then

$$
t=\frac{t}{a} \cdot a \in I^{-1} \cdot I \subseteq \mathfrak{m}
$$

(a) We will only give a proof sketch. The strategy is as follows:
(i) Ot suffices to show, that $\mathfrak{m}:=\mathfrak{p} R_{\mathfrak{p}}$ is a principal ideal.
(ii) Show that $\mathfrak{m}^{n} \neq \mathfrak{m}$.
(iii) Show that \mathfrak{m} is invertible.

Then pick $t \in \mathfrak{m}^{2} \backslash \mathfrak{m}$ and obtain $t \cdot \mathfrak{m}^{-1}=R_{\mathfrak{m}}$. This is true, since otherwise, as \mathfrak{m} is the only maximal ideal in $R_{\mathfrak{p}}$, we would have $t \cdot \mathfrak{m}^{-1} \subseteq \mathfrak{m}$ and thus $t \in \mathfrak{m}^{2}$, which implies $\mathfrak{m}=\mathfrak{m}^{2}$. Then we have

$$
(t)=t \cdot R=t \cdot\left(\mathfrak{m} \cdot \mathfrak{m}^{-1}\right)=R_{\mathfrak{p}} \cdot \mathfrak{m}=\mathfrak{m}
$$

which will gives us the claim.

Theorem 14.8 Let R be a Dedekind domain, L / k a finite separable field extension of $k:=$ Quot (R) and S the integral closure of R in L. Then S is a Dedekind domain.
proof. We will show all the required properties of a Dedekind domain. integral domain. This is clear.
dimension 1. We know that S / R is integral and Proposition 13.7 gives us $\operatorname{dim}(S)=1$.
normal. If $x \in L$ is integral over S, x is integral over R, thus $x \in S$.
noetherian. This is the only hard work in the proof. Let $N:=[L: k]$. Since L / k is separable, there exists $\alpha \in L$ such that $L=k(\alpha)$. Moreover we have $\left|\operatorname{Hom}_{k}(L, \bar{k})\right|=n$, say $\operatorname{Hom}_{k}(L, \bar{k})=$ $\left\{\mathrm{id}=\sigma_{1}, \ldots \sigma_{\mathrm{n}}\right\}$.
claim (a) α can be chosen in S.
Then let

$$
D:=\left(\begin{array}{cccc}
1 & \alpha & \ldots & \alpha^{n-1} \\
1 & \sigma_{2}(\alpha) & \ldots & \sigma_{2}\left(\alpha^{n-1}\right) \\
\vdots & \vdots & & \vdots \\
1 & \sigma_{n}(\alpha) & \ldots & \sigma_{n}\left(\alpha^{n-1}\right)
\end{array}\right)=\left(\sigma_{i}\left(\alpha^{j}\right)\right)_{(i, j) \in\{1, \ldots, n\} \times\{0, \ldots, n-1\}}
$$

and $d:=(\operatorname{det}(D))^{2} . d:=d_{L / k}(\alpha)$ is called the discriminant of L / k with respect to α.
claim (b) We have
(i) $d \neq 0$
(ii) S is contained in the R-module generated by $\frac{1}{d}, \frac{\alpha}{d}, \ldots, \frac{\alpha^{n-1}}{d}$.

Then S is submodule of a finitely generated R-module, and since R is noetherian, S is noetherian as an R-module, thus also as an S-module. This proves noetherian. Now prove the claims.
(a) Let $\tilde{\alpha} \in L$ ba a primitive element, i.e. $L=k(\tilde{\alpha})$. Let

$$
f=X^{n}-\sum_{i=0}^{n-1} c_{i} X^{i}
$$

be the minimal polynomial of $\tilde{\alpha}$ over k. Writr $c_{i}=\frac{a_{i}}{b_{i}}$ for suitable $a_{i}, b_{i} \in R, b_{i} \neq 0$. Now define

$$
b:=\prod_{i=0}^{n-1} b_{i}, \quad \alpha:=b \cdot \tilde{\alpha} .
$$

Since we have

$$
\alpha^{n}=b^{n} \tilde{\alpha}^{n}=b^{n} \cdot \sum_{i=0}^{n-1} c_{i} \tilde{\alpha}^{i}=\sum_{i=0}^{n-1} c_{i} \cdot \frac{\alpha^{i}}{b^{i}} b^{n}
$$

we obtain

$$
\alpha^{n}=b^{n} \cdot \tilde{\alpha}^{n}=\sum_{i=0}^{n-1} c_{i} ? \alpha^{i}, \quad c_{i}^{\prime}=c_{i} \cdot b^{n-i} \in R .
$$

Thus α is integral over R, i.e. $\alpha \in S$. We easily see $k(\alpha)=k(\tilde{\alpha})$, hence the claim is proved.
(b) (i) We have

$$
d=(\operatorname{det}(D))^{2}=\prod_{1 \leqslant i<j \leqslant n}\left(\sigma_{i}(\alpha)-\sigma_{j}(\alpha)\right)^{2} \neq 0
$$

since otherwise we would have $\sigma_{i}(\alpha)=\sigma_{j}(\alpha)$, i.e.e $\sigma_{i}=\sigma_{j}$, which is not possible.
(ii) Let $\beta \in S$. Write

$$
\beta=\sum_{i=0}^{n-1} c_{i+1} \alpha^{i}, \quad c_{i} \in k
$$

We have to show: $c_{i} \in \frac{1}{d} R$ for all $1 \leqslant i \leqslant n$. Therefore we need
claim (c) There is a matrix $A \in R^{n \times n}$ and $b \in R^{n}$, such that

$$
A \cdot\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=b \quad \text { and } \quad \operatorname{det}(A)=d
$$

Then by Cramer's rule and Claim (c) we have

$$
c_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}=\frac{\operatorname{det}\left(A_{i}\right)}{d} \in \frac{1}{d} \in R
$$

where A_{i} is obtained by replacing the i-th column of A by b. This proves claim (b).
(c) Recall that

$$
\operatorname{tr}_{L / k}: L \longrightarrow k, \quad \beta \mapsto \sum_{i=1}^{n} \sigma_{i}(\beta)
$$

is a k-linear map.For β as above we find for $1 \leqslant i \leqslant n$

$$
(*) \operatorname{tr}_{L / k}(\underbrace{\alpha^{i-1} \beta}_{\in S})=\sum_{j=1}^{n} \operatorname{tr}_{L / k}\left(\alpha^{i-1} \alpha^{j-1} c_{j}\right)=\sum_{j=1}^{n} \operatorname{tr}_{L / k}\left(\alpha^{i-1} \alpha^{j-1}\right) c_{j} \in k \cap S=R
$$

where the last equality holds since R is normal and by Proposition 14.5. Let now

$$
A=\left(a_{i j}\right)_{(i, i) \in\{1, \ldots, n\} \times\{1, \ldots, n\}}, \quad a_{i j}=\operatorname{tr}_{L / k}\left(\alpha^{i-1}, \alpha^{j-1}\right)
$$

and

$$
b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right), \quad b_{i}=\operatorname{Tr}_{L / k}\left(\alpha^{i-1} \beta\right)
$$

Then by (*) we have

$$
A \cdot\left(\begin{array}{c}
c_{1} \\
\cdots \\
c_{n}
\end{array}\right)=b
$$

i.e. the first part of the claim. Moreover we have $D^{T} D=\left(\tilde{a}_{i j}\right)$, where

$$
\tilde{a}_{i j}=\sum_{k=1}^{n} \sigma_{k}\left(\alpha^{i-1}\right) \sigma_{k}\left(\alpha^{j-1}\right)=\sum_{k=1}^{n} \sigma_{k}\left(\alpha^{i-1} \alpha^{j-1}\right)=\operatorname{tr}_{L / k}\left(\alpha^{i-1}, \alpha^{j-1}\right)=a_{i j} .
$$

Hence $D^{T} D=A$ and by $\operatorname{det}(D)=\operatorname{det}\left(D^{T}\right)$ we have

$$
\operatorname{det}(D)^{2}=\operatorname{det}(D \cdot D)=\operatorname{det}\left(D \cdot D^{T}\right)=\operatorname{det}(A)=d
$$

We have now shown that S is an integral domain, of dimension 1, noetherian and normal. By Proposition 14.6 the theorem is proved.

